Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 42-48     DOI: 10.6046/gtzyyg.2019.01.06
|
Automatic expansion extraction algorithm of remote sensing images
Li XUE1,2, Shuwen YANG1,2(), Jijing MA1,2, Xin JIA1,2, Ruliu YAN1,2
1.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(5540 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To tackle the incomplete extraction problem faced by most remote sensing images shadow extraction algorithms for extracting shadow,this paper purposes an automatic expansion extraction algorithm of remote sensing images shadow. Firstly, based on the characteristics that there is a peak of the rate of change of pixel values at the shadow boundary of the near infrared band and the rate of change of pixel values is stable inside the shadow, the authors established the criteria of shadow boundary judgment to determine whether the pixel is located in the shadow boundary. Second, on the basis of initial shadow extraction, each shadow is expanded by the criterion from the inside outward, which not only can take into account a single shadow area, but also is no longer confined to the global image features or local features of remote sensing images, so that shadow is extracted more completely. Experimental results show that the algorithm can effectively improve the accuracy and efficiency of shadow extraction.

Keywords remote sensing images      shadow boundary      extraction      rate of change     
:  TP751  
Corresponding Authors: Shuwen YANG     E-mail: ysw040966@163.com
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li XUE
Shuwen YANG
Jijing MA
Xin JIA
Ruliu YAN
Cite this article:   
Li XUE,Shuwen YANG,Jijing MA, et al. Automatic expansion extraction algorithm of remote sensing images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 42-48.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.06     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/42
Fig.1  Shadow classification
影像 阴影1 阴影2 边界 非阴影1 非阴影2
QuickBird 0.130 0.296 0.479 0.245 0.103
ZY3 0.045 0.092 0.292 0.123 0.041
WorldView 0.040 0.133 0.477 0.213 0.057
GF-1 0.099 0.285 0.545 0.274 0.061
Tab.1  Change rate table of shadow pixel value
Fig.2  Flow chart for shadow expansion
Fig.3  Flow chart for semiautomatic extraction
Fig.4  Expansion process
Fig.5  Comparison of results of GF-1 shadow extraction
Fig.6  Comparison of results of QuickBird shadow extraction
Fig.7  Comparison of results of ZY3 shadow extraction
Fig.8  Pixels of shadow border
影像 评价指标 初步提
取/%
自动提
取/%
半自动
提取/%
人工经验
提取/%
GF-1 C 52.6 73.3 75.4 70.6
A 52.3 64.6 65.2 69.7
L 47.4 26.7 24.6 29.4
QuickBird C 70.0 87.0 87.1 72.7
A 69.4 72.5 71.3 71.8
L 30.0 13.0 12.9 27.3
ZY3 C 78.7 89.6 94.4 83.3
A 76.2 77.7 76.5 79.4
L 21.3 10.4 5.6 16.7
Tab.2  Statistical table of shadow test results
[1] Finlayson G D, Hordley S D, Drew M S. Removing shadows from images using retinex [C]//Proceeding of the 10th Color Image Conference.Scottsclale:CIC, 2002: 823-836.
[2] Irvir R B, Mckeown D M . Methods for exploiting the relationship between buildings and their shadows in aerial imagery[J]. IEEE Transaction on Systems:Man and Cybernetics, 1989,19(16):1564-1575.
doi: 10.1117/12.952691 url: http://ieeexplore.ieee.org/document/44071/
[3] Mamassian P, Knill D C, Kersten D . The perception of cast shadows[J]. Trends in Cognitive Sciences, 1998,2(8):288-295.
doi: 10.1016/S1364-6613(98)01204-2 pmid: 21227211 url: http://linkinghub.elsevier.com/retrieve/pii/S1364661398012042
[4] Etemadnia H, Alsha RIF M R.Automatic image shadow identification using LPF in homomorphic processing system [C]//Proceedings of VII Digital Image Computing: Techniques and Applications.Sydney:Committee of DICTA, 2003.
[5] 姚花琴, 杨树文, 刘正军 , 等. 基于QuickBird影像的城市高大地物阴影检测方法[J]. 国土资源遥感, 2015,27(2):51-55.doi: 10.6046/gtyyg.2015.02.08.
doi: 10.6046/gtzyyg.2015.02.08 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201502009
[5] Yao H Q, Yang S W, Liu Z J , et al. A method of shadow detection for city tall ground objects based on QuickBird images[J]. Remote Sensing for Land and Resources, 2015,27(2):51-55.doi: 10.6046/gtyyg.2015.02.08.
[6] 张云飞, 张晔 . 利用二维熵自动确定图像分割的阈值[J].哈尔滨工程大学学报, 2006(3):353-356.
doi: 10.3969/j.issn.1006-7043.2006.03.008 url: http://www.cqvip.com/qk/95261x/200603/22185767.html
[6] Zhang Y F, Zhang Y . Automatic threshold of image segmentation using 2-D entropy[J].Journal of Harbin Engineering University, 2006(3):353-356.
[7] 虢建宏, 田庆久, 吴昀昭 . 遥感影像阴影多波段检测与去除理论模型研究[J]. 遥感学报, 2006,10(2):151-159.
doi: 10.3321/j.issn:1007-4619.2006.02.002 url: http://www.cnki.com.cn/Article/CJFDTotal-YGXB200602001.htm
[7] Guo J H, Tian Q J, Wu Y Z . Study on multispectral detecting shadow areas and a theoretical model of removing shadows from remote sensing images[J]. Journal of Remote Sensing, 2006,10(2):151-159.
[8] 于东方, 殷建平, 张国敏 . 一种基于灰度直方图的遥感影像阴影自动检测方法[J]. 计算机工程与科学, 2008,30(12):43-44,93.
doi: 10.3969/j.issn.1007-130X.2008.12.011 url: http://www.cnki.com.cn/Article/CJFDTotal-JSJK200812013.htm
[8] Yu D F, Yin J P, Zhang G M . An automatic shadow detection method for remote sensing images based on gray histogram[J]. Computer Engineering and Science, 2008,30(12):43-44,93.
[9] 韩青松 . 基于Otsu算法的遥感图像阈值分割[D]. 新疆:新疆大学, 2011.
[9] Han Q S . Remote Sensing Image Thresholding Segmentation Based on the Otsu Algorithm[D]. Xinjiong:Xinjiang University, 2011.
[10] 高贤君, 万幼川, 郑顺义 , 等. 航空遥感影像阴影的自动检测与补偿[J]. 武汉大学学报(信息科学版), 2012,37(11):1299-1302.
url: http://www.cnki.com.cn/Article/CJFDTotal-WHCH201211010.htm
[10] Gao X J, Wan Y C, Zheng S Y , et al. Automatic shadow detection and compensation of aerial remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2012,37(11):1299-1302.
[11] 李轶鲲, 杨树文, 刘涛 . 基于多峰直方图的遥感图像阈值自动选取算法[J]. 兰州交通大学学报, 2013,32(6):199-204.
doi: 10.3969/j.issn.1001-4373.2013.06.043 url: http://d.wanfangdata.com.cn/Periodical/lztdxyxb201306043
[11] Li Y K, Yang S W, Liu T . An automatic threshold selection approach for remote sensing imagery of multimodal histograms[J]. Journal of Lanzhou Jiaotong University, 2013,32(6):199-204.
[12] 赵显富, 胡晓雯, 赵轩 . 一种基于彩色模型的遥感影像阴影检测方法[J].测绘通报, 2014(5):20-22,59.
doi: 10.13474/j.cnki.11-2246.2014.0149 url: http://d.wanfangdata.com.cn/Periodical/chtb201405006
[12] Zhao X F, Hu X W, Zhao X . A method of remote sensing images shadow detection based on color models[J].Bulletin of Surveying and Mapping, 2014(5):20-22,59.
[13] 位明露, 詹总谦 . 一种改进的航空遥感影像阴影自动检测方法[J].测绘通报, 2016(6):14-17.
doi: 10.13474/j.cnki.11-2246.2016.0180 url: http://d.wanfangdata.com.cn/Periodical/chtb201606004
[13] Wei M L, Zhan Z Q . An improved method of automatic shadow detection for aerial remote sensing images[J].Bulletin of Surveying and Mapping, 2016(6):14-17.
[14] 杨猛, 杨树文, 雍万铃 , 等. 集成特征分量的阴影多尺度分割方法[J]. 遥感信息, 2017,32(1):109-114.
doi: 10.3969/j.issn.1000-3177.2017.01.019 url: http://www.cqvip.com/QK/92871X/201701/671396283.html
[14] Yang M, Yang S W, Yong W L , et al. Multi-scale shadow segmentation method based on characteristic component[J]. Remote Sensing Information, 2017,32(1):109-114.
[15] 池毓锋, 赖日文, 闫琦 , 等. 基于Landsat8 OLI数据的山区阴影信息检测与提取[J]. 山地学报, 2017,35(4):580-589.
doi: 10.16089/j.cnki.1008-2786.000256 url: http://www.cnki.com.cn/Article/CJFDTotal-SDYA201704018.htm
[15] Chi Y F, Lai R W, Yan Q , et al. Detection and extraction of mountain shadow information from Landsat8 OLI data[J]. Mountain Research, 2017,35(4):580-589.
[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[4] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[5] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[6] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[7] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[8] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[9] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
[10] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[11] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[12] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[13] DONG Tiancheng, YANG Xiao, LI Hui, ZHANG Zhi, QI Rui. The extraction of plateau lakes from SAR images based on Faster R-CNN and MorphACWE model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 129-137.
[14] LI Tianqi, WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
[15] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech