|
|
|
|
|
|
Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest |
Juan XUE1, Linfeng YU1, Qinan LIN1, Guang LIU2, Huaguo HUANG1( ) |
1. Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China 2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China |
|
|
Abstract Forest pests constitute one of the important threats to the healthy growth of forests, and the monitoring of its damage is of great significance to forest protection. In this paper, a method of monitoring the degree of forest pests by using interferometric synthetic aperture Radar (InSAR) is proposed. Xiangyun County of Yunnan Province was selected as the study area and the multi-temporal C-band Sentinel-1 images were applied. Based on the information of Radar backscattering intensity, interference phase and coherence coefficient, the time-varying characteristics of coherence coefficient and backscattering coefficient were analyzed by combining the phenological phase of Yunnan pine and relative humidity in the height of 2 meters. Fusion of multi-temporal data was applied to the classification of health forest and different degrees of damaged forest. Some conclusions have been reached: ① The temporal variation of the backscattering coefficient and the coherence coefficient are related to the phenological phenology of Yunnan pine. ② The correlation between the relative humidity and backscattering coefficient is higher than coherence coefficient, which reaches 0.78 in the mildly damaged forest. ③ Field data validation shows that classification accuracy of the multi-temporal coherence coefficient is higher than the backscattering coefficient, and the descending image has the highest precision which reaches 83.15%. The result shows that the coherence coefficient of C-band SAR time series can effectively identify the problem as to whether the forest is healthy or suffers different degrees of damage. ④ The method has certain advantages in monitoring and classification of forest pests in cloudy areas as well as in further enhancing the capability of remote sensing on monitoring pests.
|
Keywords
multi-temporal InSAR
Yunnan pine forest
pests
classification
|
|
Corresponding Authors:
Huaguo HUANG
E-mail: huaguo_huang@bjfu.edu.cn
|
Issue Date: 07 December 2018
|
|
|
[1] |
吴柳萍, 纪志荣, 连素兰 , 等. 福建省森林病虫害发生风险的概率分析[J]. 森林与环境学报, 2017,37(1):95-101.
doi: 10.13324/j.cnki.jfcf.2017.01.015
url: http://www.cqvip.com/QK/96406A/201701/671115374.html
|
[1] |
Wu L P, Ji Z R, Lian S L , et al. Probability analysis of forest pests occurring risk in Fujian Province[J]. Journal of Forest and Environment, 2017,37(1):95-101.
|
[2] |
张衡, 潘洁, 廖振峰 . 森林病虫害高光谱遥感监测的研究进展[J]. 中国森林病虫, 2014,33(2):26-30.
|
[2] |
Zhang H, Pan J, Liao Z F . A review of hyperspectral remote sensing monitoring of the forest pests[J]. Forest Pest and Disease, 2014,33(2):26-30.
|
[3] |
王植, 曹均, 曹庆昌 , 等. 高光谱遥感监测板栗病虫害的可行性初探[J]. 中国农学通报, 2010,26(13):380-384.
url: http://d.wanfangdata.com.cn/Periodical/zgnxtb201013082
|
[3] |
Wang Z, Cao J, Cao Q C , et al. Feasibility of monitoring chestnut diseases and pests with hyper spectral remote sensing[J]. Chinese Agricultural Science Bulletin, 2010,26(13):380-384.
|
[4] |
王晓堂 . 基于高光谱的松萎蔫病动态变化的研究[D]. 南京:南京林业大学, 2011.
|
[4] |
Wang X T . Research on Dynamie Changes of Pine Wilt Disease Based on Hyperspectral[D]. Nanjing:Nanjing Forestry University, 2011.
|
[5] |
王馨爽, 陈尔学, 李增元 , 等. 多时相双极化SAR影像林地类型分类方法[J]. 林业科学, 2014,50(3):83-91.
doi: 10.11707/j.1001-7488.20140312
|
[5] |
Wang X S, Chen E X, Li Z Y , et al. Multi-temporal and dual-polarization SAR for forest land type classification[J].Scientia Sil-vae Sinicae. 2014,50(3):83-91
|
[6] |
彭立, 杨武年, 黄瑾 . 川西高原多时相干涉雷达土地覆盖分类研究[J]. 西南大学学报(自然科学版), 2016,38(5):125-132.
doi: 10.13718/j.cnki.xdzk.2016.05.021
url: http://d.wanfangdata.com.cn/Periodical/xnnydxxb201605021
|
[6] |
Peng L, Yang W N, Huang J . Study of land cover classification using multi-temporal InSAR data in west plateau of Sichuan[J]. Journal of Southwest University(Natural Science Edition), 2016,38(5):125-132.
|
[7] |
肖伟山 . 双频雷达后向散射和相干性分析及土地利用覆盖分类应用[D]. 福建:福州大学, 2010.
|
[7] |
Xiao W S . Dual-band SAR Backscatter and Coherence Analysis and Applications on Land Use/Cover Classification[D]. Fujian:Fuzhou University, 2010.
|
[8] |
叶辉 . 光照、温度对纵坑切梢小蠹起飞行为的影响[J]. 昆虫知识, 2000,37(6):342-344.
doi: 10.3969/j.issn.0452-8255.2000.06.007
url: http://d.wanfangdata.com.cn/Periodical/kczs200006007
|
[8] |
Ye H . The influence of temperature and light on the taking-off of Tomicus piniperda[J]. Entomological Knowledge, 2000,37(6):342-344.
|
[9] |
路荣春 . 云南纵坑切梢小蠹和横坑切梢小蠹生态学的研究及其有效引诱物质的探索[D]. 北京:北京林业大学, 2008.
|
[9] |
Lu R C . Study on the Ecology of Tomicus Yunnanensis and Tominus Minor(Coleoptera: Scolytidae)and Their Kairomones[D]. Beijing:Beijing Forestry University, 2008.
|
[10] |
李燕 . 云南玉溪松小蠹虫成灾原因及防治对策[J]. 林业资源管理, 2013,35(3):40-42.
doi: 10.3969/j.issn.1002-6622.2013.03.010
url: http://www.cqvip.com/QK/98280X/201303/46975297.html
|
[10] |
Li Y . Causes of Tomicus piniperda L.disaster in Yuxi of Yunnan Province and countermeasures of prevention and control[J]. Forest Resources Management, 2013,35(3):40-42.
|
[11] |
曾玲方, 李霖, 万丽华 . 基于Sentinel-1卫星SAR数据的洪水淹没范围快速提取[J]. 地理信息世界, 2015,22(5):100-103,107.
doi: 10.3969/j.issn.1672-1586.2015.05.020
url: http://www.cqvip.com/QK/91238A/201505/67728275504849534853485050.html
|
[11] |
Zeng L F, Li L, Wang L H . SAR-based fast flood mapping using Sentinel-1 imagery[J]. Geomatics World, 2015,22(5):100-103,107.
|
[12] |
Ardhuin F, Collard F, Chapron B , et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015,42(7):2317-2325.
doi: 10.1002/2014GL062940
url: http://doi.wiley.com/10.1002/2014GL062940
|
[13] |
Wang X, Ge L L, Li X J . Pasture monitoring using SAR with COSMO-SkyMed,ENVISAT ASAR,and ALOS PALSAR in Otway,Australia[J]. Remote Sensing, 2013,5(7), 3611-3636.
doi: 10.3390/rs5073611
url: http://www.mdpi.com/2072-4292/5/7/3611
|
[14] |
杨小勇 . 方差分析法浅析——单因素的方差分析[J]. 实验科学与技术, 2013,11(1):41-43.
doi: 10.3969/j.issn.1672-4550.2013.01.015
url: http://d.wanfangdata.com.cn/Periodical/sykxyjs201301015
|
[14] |
Yang X Y . Discussion of variance analysis:The single factor variance analysis[J]. Experiment Science and Technology, 2013,11(1):41-43.
|
[15] |
许章华, 刘健, 陈崇成 , 等. 松毛虫危害下的马尾松林冠层光谱特征可辨性分析[J]. 国土资源遥感, 2016,28(2):41-47.doi: 10.6046/gtzyyg.2016.02.07.
doi: 10.6046/gtzyyg.2016.02.07
url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201602007
|
[15] |
Xu Z H, Liu J, Chen C C , et al. Canopy spectral characteristics distinguishability analysis of Pinus massoniana forests with Dendrolimus punctatus Walker damage[J]. Remote Sensing for Land and Resources, 2016,28(2):41-47.doi: 10.6046/gtzyyg.2016.02.07.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|