Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 232-239     DOI: 10.6046/gtzyyg.2020.03.30
|
Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed
GAO Wenlong1(), SU Tengfei1,2,3, ZHANG Shengwei1,2,3(), DU Yinlong1, LUO Meng1
1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Key Laboratory of Protection and Utilization of Water Resources of Inner Mongolia Atuonomous Region,Hohhot 010018, China
3. Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot 010018, China
Download: PDF(4522 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To tackle the problem whether mining will cause great changes in the types of surface features and environmental deterioration, the authors used Landsat (TM,OLI) images to classify the land in 2006, 2010, 2014 and 2018 in Hailiutu watershed, and revealed the temporal and spatial characteristics of land use changes in three stages (one stage every four years) from 2006 to 2018. Screening and comparing the classification methods MLE, SVM, RF and applying the statistical methods of features change and transfer matrix show that the accuracy of land classification map obtained by RF is better than that of the other classification methods, and the quantitative interpretation of land classification analysis was carried out for many years. In the three stages, the transformation of sandy land and grassland/shrub was frequent, the total area of sandy land decreased by 16.83%, the grassland/shrub increased by 12.68%, and the construction land increased steadily year by year. By 2018, the development of the mining area had not caused great damage to the ecological environment, and the change of the geological structure of the mine was consistent with the trend of the geological structure of Hailiutu basin.

Keywords remote sensing      transfer matrix      mining disturbance      land use     
:  TP79  
Corresponding Authors: ZHANG Shengwei     E-mail: Gao19950723@126.com;zsw@imau.edu.cn
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wenlong GAO
Tengfei SU
Shengwei ZHANG
Yinlong DU
Meng LUO
Cite this article:   
Wenlong GAO,Tengfei SU,Shengwei ZHANG, et al. Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed[J]. Remote Sensing for Land & Resources, 2020, 32(3): 232-239.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.30     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/232
Fig.1  Geographic location of the study area
影像编号 卫星
(传感器)
获取时间 空间分
辨率/m
云量/
%
LC08_L1TP_128033_20181004_20181010_01_T1 Landsat8(OLI) 2018-10-04 30 0.28
LC81280332014298-LGN00 Landsat8(OLI) 2014-10-25 30 0.50
LT51280332010255-IKR00 Landsat5(TM) 2010-09-12 30 0.18
LT51280332006292-IKR00 Landsat5(TM) 2006-10-19 30 0
Tab.1  Image information
Fig.2  Remote sensing image interpretation signs of Hailiutu watershed
地类名称 解译标志
沙地 影像色调呈褐色、黄色,形状不规则,在研究区内分布极其广泛
草地/灌木 影像呈现暗红色、深红色、黑色,形状为点状、片状、分布极其不均匀,研究区各处均有分布
水域 影像呈深浅颜色不一的蓝色、黑色和天蓝色,形状多呈条带状,带宽大小不一,边界明显
耕地 影像色调为鲜红色、褐色及土黄色,形状呈规则的方形、圆形(圆形为喷灌、滴灌耕地),分布在农村居民点与河流附近
建设用地 影像呈天蓝色、白色等,形状规则,相对集中,农村居民点呈点状分布,公路形状细长连续,与周围分界线明显
Tab.2  Remote sensing image interpretation instructions
Fig.3  Flow chart of land use/cover change dynamic monitoring
Fig.4  Accuracy comparison of MLE,SVM and RF
Fig.5  Land classification maps
年份 沙地 草地/灌木 水域 耕地 建设用地 总面积/
km2
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
2006年 1 525.25 54.53 806.7 28.84 15.25 0.54 395.61 14.14 54.43 1.95 2 797.24
2010年 1 385.34 49.53 900.36 32.19 14.11 0.50 386.91 13.83 110.52 3.95 2 797.24
2014年 1 323.02 47.30 941.29 33.65 15.40 0.55 384.62 13.75 132.91 4.75 2 797.24
2018年 1 053.95 37.68 1 161.52 41.52 29.87 1.07 416.78 14.90 135.13 4.83 2 797.24
Tab.3  Area and proportion of different land use types in Hailiutu watershed in 4 stages
2018年
地物类别
2006年地物类别
沙地 草地/灌木 水域 耕地 建设用地
沙地 954.61 48.29 0.26 44.48 6.18
草地/灌木 380.49 580.80 5.75 176.65 17.58
水域 8.45 6.75 5.37 5.43 3.85
耕地 126.49 135.11 2.77 145.09 7.26
建设用地 54.82 35.64 1.07 23.93 19.54
Tab.4  Transfer matrix of land use/cover change in Hailiutu Watershed from 2006 to 2018(km2)
Fig.6-1  Time series changes of coal mine features in Balasu,Yinpanhao and Dahaize
Fig.6-2  Time series changes of coal mine features in Balasu,Yinpanhao and Dahaize
Fig.7  Statistics of each mineral surface area
[1] Lawler J J, Lewis D J, Nelson E, et al. Projected land-use change impacts on ecosystem services in the United States[J]. Proceedings of the National Academy of Sciences, 2014,111(20):7492-7497.
doi: 10.1073/pnas.1405557111 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1405557111
[2] Wulder M A, White J C, Goward S N, et al. Landsat continuity:Issues and opportunities for land cover monitoring[J]. Remote Sensing of Environment, 2008,112(3):955-969.
doi: 10.1016/j.rse.2007.07.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425707003331
[3] Mooney H A, Duraiappah A, Larigauderie A. Evolution of natural and social science interactions in global change research programs[J]. Proceedings of the National Academy of Sciences, 2013,110(1):3665-3672.
doi: 10.1073/pnas.1107484110 url: http://www.pnas.org/cgi/doi/10.1073/pnas.1107484110
[4] Zhou R, Lin M, Gong J, et al. Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC[J]. Journal of Geographical Sciences, 2019,29(5):831-845.
doi: 10.1007/s11442-019-1631-0 url: http://www.geogsci.com/EN/abstract/abstract42854.shtml
[5] 石玉琼, 李团胜, 史晓惠, 等. 榆林地区榆林地区景观生态敏感性时空特征[J]. 国土资源遥感, 2017,29(2):167-172.doi: 10.6046/gtzyyg.2017.02.24.
[5] Shi Y Q, Li T S, Shi X H, et al. Spatial-temporal characteristics of landscape ecological sensitivity in Yulin area[J]. Remote Sensing for Land and Resources, 2017,29(2):167-172.doi: 10.6046/gtzyyg.2017.02.24.
[6] Wang X, Tan K, Xu K, et al. Quantitative evaluation of the eco-environment in a coalfield based on multi-temporal remote sensing imagery:A case study of Yuxian,China[J]. International Journal of Environmental Research and Public Health, 2019,16(3).
doi: 10.3390/ijerph16030515 pmid: 30759776 url: https://www.ncbi.nlm.nih.gov/pubmed/30759776
[7] 刁娇娇, 龚鑫烨, 李明诗. 利用综合变化检测方法进行土地覆盖变化制图[J]. 国土资源遥感, 2018,30(1):157-165.doi: 10.6046/gtzyyg.2018.01.22.
[7] Diao J J, Gong X Y, Li M S. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for land and Resources, 2018,30(1):157-165.doi: 10.6046/gtzyyg.2018.01.22.
[8] 宁佳, 刘纪远, 匡文慧, 等. 中国2010—2015年土地利用变化的时空格局与新特征[J]. 地理学报, 2018,73(5):789-802.
doi: 10.11821/dlxb201805001 url: http://www.geog.com.cn/CN/abstract/abstract40219.shtml
[8] Ning J, Liu J Y, Kuang W H, et al, Spatiotemporal patterns and characteristics of land-use change in China during 2010—2015[J].Journal of Geographical Sciences,2018(5):789-802.
[9] 李秀彬. 全球环境变化研究的核心领域——土地利用/土地覆被变化的国际研究动向[J].地理学报, 1996(6):553-558.
doi: 10.11821/xb199606009 url: http://www.geog.com.cn/CN/abstract/abstract21037.shtml
[9] Li X B. A review of the international researches on land use/land cover change[J].Acta Geographica Sinica 1996(6):553-558.
doi: 10.11821/xb199606009 url: http://www.geog.com.cn/CN/abstract/abstract21037.shtml
[10] 庄逐舟, 刘嘉勋, 蔡凌雁, 等. 黄土高原土地利用/覆被变化研究进展[J]. 水土保持, 2016,4(3):29-39.
[10] Zhuang Z Z, Liu J X, Cai L Y, et al. Research progress of land use/land cover change(LUCC) in the Loess Plateau[J]. Open Journal of Soil and Water Conservation, 2016,4(3):29-39.
doi: 10.12677/OJSWC.2016.43005 url: http://www.HansPub.org/journal/PaperDownload.aspx?DOI=10.12677/OJSWC.2016.43005
[11] 牛潞珍, 石英. 土地利用/覆盖变化研究进展综述[J].东南大学学报(哲学社会科学版), 2014(s1):25-26.
[11] Liu L Z, Shi Y. A review of research progress on land use/cover change[J].Journal of Southeast University(Philosophy and Science Edition) 2014(s1):25-26.
[12] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报, 2009,64(12):1411-1420.
doi: 10.11821/xb200912001 url: http://www.geog.com.cn/CN/abstract/abstract18267.shtml
[12] Liu J Y, Zhang Z X, Xu X L, et al. Spatial patterns and driving forces of land use change in China in the early 21st century[J]. Acta Geographica Sinica, 2009,64(12):1411-1420.
doi: 10.11821/xb200912001 url: http://www.geog.com.cn/CN/abstract/abstract18267.shtml
[13] 顿耀龙, 王军, 白中科, 等. 基于灰色模型预测的矿区生态系统服务价值变化研究——以山西省平朔露天矿区为例[J]. 资源科学, 2015,37(3):494-502.
url: http://159.226.115.21/zykx/CN/abstract/abstract4120.shtml
[13] Dun Y L, Wang J, Bai Z K, et al. Changes in Pingshuo opencast mining area ecosystem service values based on grey prediction modeling[J]. Resources Science, 2015,37(3):494-502.
url: http://159.226.115.21/zykx/CN/abstract/abstract4120.shtml
[14] Fei Z, Ayinuer Y, Dong F W. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County,Xinjiang,China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences, 2018,77(13):491.
doi: 10.1007/s12665-018-7676-z url: https://doi.org/10.1007/s12665-018-7676-z
[15] Jiang J, Tian G. Analysis of the impact of land use/land cover change on land surface temperature with remote sensing[J]. Procedia Environmental Sciences, 2010,(2):0-575.
[16] 张军峰, 孟凡浩. 新疆孔雀河流域人工绿洲近40年土地利用/覆被变化[J]. 中国沙漠, 2018,38(3):223-231.
[16] Zhang J F, Meng F H. LUCC analysis of the upstream of the Kongqi River,Xinjiang,China[J]. Journal of Desert Research, 2018,38(3):223-231.
[17] 李晶, 申莹莹, 焦利鹏, 等. 基于Landsat TM/OLI影像的兖州煤田水域面积动态监测[J]. 农业工程学报, 2017,33(18):243-250.
url: http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?file_no=20171832&flag=1
[17] Li J, Shen Y Y, Jiao L P, et al. Dynamic monitoring of water areas in Yanzhou coalfield based on Landsat TM/OLI images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(18):243-250.
url: http://www.tcsae.org/nygcxb/ch/reader/view_abstract.aspx?file_no=20171832&flag=1
[18] 马慧娟, 高小红, 谷晓天. 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019,21(3):359-371.
doi: 10.12082/dpxxkx.2019.180346 url: http://www.dqxxkx.cn/CN/abstract/abstract42948.shtml
[18] Ma H J, Gao X H, Gu X T. Random forest classification of Landsat8 imagery for the complex terrain area based on the combination of spectral,topographic and texture information[J]. Journal of Geo-Information Science, 2019,21(3):359-371.
[19] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[19] Zhang K, Hei B Q, Li S Y, et al. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for land and Resources, 2018,30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
[20] Oliphant A, Thenkabail P, Teluguntla P, et al. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud[J]. International Journal of Applied Earth Observations and Geoinformation, 2019,81(9):110-124.
doi: 10.1016/j.jag.2018.11.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243418307414
[21] 苏腾飞, 刘全明, 苏秀川. 基于多种植被指数时间序列与机器学习的作物遥感分类研究[J]. 江苏农业科学, 2017,45(16):219-224.
[21] Su T F, Liu Q M, Su X C. Crop remote sensing classification based on multi vegetation index time series and machine learning[J]. Jiangsu Agricultural Sciences, 2017,45(16):219-224.
[22] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://www.springerlink.com/content/u0p06167n6173512/
[23] 樊利恒, 吕俊伟, 于振涛, 等. 基于改进最大似然方法的多光谱遥感图像分类方法[J]. 电光与控制, 2014,21(10):52-74.
[23] Fan L H, Lyu J W, Yu Z T, et al. Multispectral remote sensing image classification method based on improved maximum likelihood method[J]. Electronics Optics & Control, 2014,21(10):52-74.
[24] 徐凯健, 田庆久, 杨闫君, 等. 遥感土地覆被分类的空间尺度响应研究[J]. 地球信息科学学报, 2018,20(2):246-253.
doi: 10.12082/dqxxkx.2018.170360 url: http://www.dqxxkx.cn/CN/abstract/abstract40033.shtml
[24] Xu K J, Tian Q J, Yang Y J, et al. Response of spatial scale for land cover classification of remote sensing[J]. Journal of Geo-Information Science, 2018,20(2):246-253.
[25] Mellor A, Haywood A, Stone C, et al. The performance of random forests in an operational setting for large area sclerophyll forest classification[J]. Remote Sensing, 2013,5(6):2838-2856.
doi: 10.3390/rs5062838 url: http://www.mdpi.com/2072-4292/5/6/2838
[26] 陈伟民, 张凌, 宋冬梅, 等. 基于AdaBoost改进随机森林的高光谱图像地物分类方法研究[J]. 遥感技术与应用, 2018,33(4):612-620.
[26] Chen W M, Zhang L, Song D M, et al. Research on hyperspectral imagery land cover classification method based on Adaboost improved random forest[J]. Remote Sensing Technology and Application, 2018,33(4):612-620.
[27] Son N T, Chen C F, Chen C R, et al. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines[J]. Geocarto International, 2017: 1-15.
[28] 田绍鸿, 张显峰. 采用随机森林法的天绘数据干旱区城市土地覆盖分类[J]. 国土资源遥感, 2016,28(1):43-49.doi: 10.6046/gtzyyg.2016.01.07.
doi: 10.6046/gtzyyg.2016.01.07 url: http://www.gtzyyg.com/CN/abstract/abstract1946.shtml
[28] Tian S H, Zhang X F. Random forest classification of land cover information of urban areas in arid regions based on TH-1 data[J]. Remote Sensing for Land and Resources, 2016,28(1):43-49.doi: 10.6046/gtzyyg.2016.01.07.
[29] 黄双燕, 杨辽, 陈曦, 等. 机器学习法的干旱区典型农作物分类[J]. 光谱学与光谱分析, 2018,38(10):3169-3176.
[29] Huang S Y, Yang L, Chen X, et al. Study of typical arid crops classification based on machine learning[J]. Spectroscopy and Spectral Analysis, 2018,38(10):3169-3176.
[30] 桑潇, 国巧真, 潘应阳, 等. 基于TM和OLI数据山西省潞城市土地利用动态变化分析与预测[J]. 国土资源遥感, 2018,30(2):125-131.doi: 10.6046/gtzyyg.2018.02.17.
[30] Sang X, Guo Q Z, Pan Y Y, et al. Research on land use dynamic change and prediction in Lucheng City of Shanxi Province based on TM and OLI[J]. Remote Sensing for Land and Resources, 2018,30(2):125-131.doi: 10.6046/gtzyyg.2018.02.17.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[4] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[5] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[6] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[7] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[8] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[9] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[10] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[11] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[12] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[13] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech