|
|
|
|
|
|
Research progress and development trend of remote sensing information extraction methods of vegetation |
HUANG Pei1( ), PU Junwei1, ZHAO Qiaoqiao1, LI Zhongjie2, SONG Haokun3, ZHAO Xiaoqing3( ) |
1. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China 2. Simao Jinlancang High-Yield Plantation Ltd., Pu’er 665699, China 3. School of Earth Science, Yunnan University, Kunming 650500, China |
|
|
Abstract The remote sensing information extraction of vegetation is the basis and key link for remote sensing investigation and dynamic monitoring of vegetation coverage, which is of great significance for regional ecological environment protection and sustainable development. For this purpose, the research progress on the remote sensing information extraction methods of vegetation was reviewed from prior knowledge, expert knowledge and related auxiliary information, extraction of vegetation phenological features, the fusion of multi-source remote sensing data, machine learning, and other methods. Then, the main problems and challenges existing at the present stage were pointed out, and the future development trend was put forward. The research shows that there are many methods to extract remote sensing information about vegetation, and different methods have their own advantages and disadvantages in the application. However, the research on remote sensing information extraction methods of vegetation is currently facing many challenges, such as the lack of openness of high-resolution remote sensing data, the poor stability of parameter settings in vegetation information extraction models, the prominent phenomenon of same objects with different spectra and different objects with the same spectrum, the difficulties in automatic extraction of vegetation remote sensing information based on an expert knowledge base, and the need in further research on the multiple-method fusion. Therefore, making more breakthroughs in integrating multi-source data, multiple methods and new features of multi-temporal remote sensing images will be necessary to promote the refined, automated, and intelligent development of remote sensing information extraction of vegetation.
|
Keywords
remote sensing of vegetation
information extraction
research methods
problems and challenges
development trend
|
|
Corresponding Authors:
ZHAO Xiaoqing
E-mail: hphyyy09@126.com;xqzhao@ynu.edu.cn
|
Issue Date: 20 June 2022
|
|
|
[1] |
徐嘉昕, 房世波, 张廷斌, 等. 2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应[J]. 国土资源遥感, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
|
[1] |
Xu J X, Fang S B, Zhang T B, et al. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land and Resources, 2020, 32(1):237-246.doi: 10.6046/gtzyyg.2020.01.32.
doi: 10.6046/gtzyyg.2020.01.32
|
[2] |
Xue J, Su B. Significant remote sensing vegetation indices:A review of developments and applications[J]. Journal of Sensors, 2017(1):1-17.
|
[3] |
韩红珠, 白建军, 张波, 等. 基于MODIS时序的陕西省植被物候时空变化特征分析[J]. 国土资源遥感, 2018, 30(4):125-131.doi: 10.6046/gtzyyg.2018.04.19.
doi: 10.6046/gtzyyg.2018.04.19
|
[3] |
Han H Z, Bai J J, Zhang B, et al. Spatial-temporal characteristics of vegetation phenology in Shanxi Province based on MODIS time series[J]. Remote Sensing for Land and Resources, 2018, 30(4):125-131.doi: 10.6046/gtzyyg.2018.04.19.
doi: 10.6046/gtzyyg.2018.04.19
|
[4] |
Li J, Pei Y, Zhao S, et al. A review of remote sensing for environmental monitoring in China[J]. Remote Sensing, 2020, 12(7):1130-1154.
doi: 10.3390/rs12071130
url: https://www.mdpi.com/2072-4292/12/7/1130
|
[5] |
卢茂芬. 遥感影像植被分类技术研究[D]. 北京: 解放军信息工程大学, 2012.
|
[5] |
Lu M F. Research on classification of vegetation from remote sensing imagery[D]. Beijing: PLA Information Engineering University, 2012.
|
[6] |
林辉, 孙华, 熊育久. 林业遥感[M]. 北京: 中国林业出版社, 2011:138-146.
|
[6] |
Lin H, Sun H, Xiong Y J. Forest remote sensing[M]. Beijing: China Forestry Publishing House, 2011:138-146.
|
[7] |
Fritz R, Frech I, Koch B, et al. Sensor fused images for visual interpretation forest stand borders[J]. International Archives of Photogrammetry and Remote Sensing, 1999, 32,1-7.
|
[8] |
田建林, 雷平, 石军南. QuickBird影像目视判读在土地利用类型调查中的应用研究[J]. 四川林勘设计, 2006, 5(1):45-48.
|
[8] |
Tian J L, Lei P, Shi J N. Studying of QuickBird image visual interpretation’s applying on land use types investigation[J]. Sichuan Forestry Exploration and Desion, 2006, 5(1):45-48.
|
[9] |
周瑞伍, 彭明春, 张一平. 云南主要森林植被碳储量及固碳潜力模拟研究[J]. 云南大学学报(自然科学版), 2017, 39(6):1089-1103.
|
[9] |
Zhou R W, Peng M C, Zhang Y P. The simulation research of carbon storage and sequestrationpotential of main forest vegetation in Yunnan Province[J]. Journal of Yunnan University(Natural Sciences Edition), 2017, 39(6):1089-1103.
|
[10] |
程晋昕, 余凌翔, 鲁韦坤. 基于高分辨率遥感影像的滇池湖滨湿地植被类型监测[J]. 云南地理环境研究, 2013, 25(6):1-8.
|
[10] |
Chen J X, Yu L X, Lu W K. Vegetation types monitoring of Dianchi Lake wetland based on high-spatial resolution remote sensing imagery[J]. Yunnan Geographic Environment Research, 2013, 25(6):1-8.
|
[11] |
Roslani M A, Mustapha, M A, Lihan T, et al. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery[C]// Universiti-Kebangsaan-Malaysia,Faculty-of-Science-and-Technology.American Institute of Physics, 2013,480-486.
|
[12] |
雷江涛, 韦达铭, 潘婵玲, 等. 基于监督分类融合与优化的森林面积变化自动检测方法[J]. 测绘, 2019, 42(3):99-104,131.
|
[12] |
Lei J T, Wei D M, Pan C L, et al. Automatic detection method for change of forest area based on supervised classification fusion and optimization[J]. Surveying and Mapping, 2019, 42(3):99-104,131.
|
[13] |
肖凡, 郭俊军, 张梦杰. 基于Landsat8数据和监督分类方法的土地利用分类研究[J]. 安徽农学通报, 2020, 26(8):110-113.
|
[13] |
Xiao F, Guo J J, Zhang M J. Study on land use classification based on Landsat8 data and supervised classification method[J]. Anhui Agricultural Science Bulletin, 2020, 26(8):110-113.
|
[14] |
任玉冰, 赵磊. 迭代非监督分类快速提取林地信息的研究[J]. 干旱环境监测, 2013, 27(3):126-130.
|
[14] |
Ren Y B, Zhao L. Research on iterative unsupervised classification of rapid extraction of forest information[J]. Arid Environmental Monitoring, 2013, 27(3):126-130.
|
[15] |
吴焕丽, 崔可旺, 张馨, 等. 基于改进K-means图像分割算法的细叶作物覆盖度提取[J]. 农业机械学报, 2019, 50(1):42-50.
|
[15] |
Wu H L, Cui K W, Zhang X, et al. Improving accuracy of fine leaf crop coverage by improved K-means algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):42-50.
|
[16] |
Mohammady M, Moradi H R, Zeinivand H, et al. A comparison of supervised,unsupervised and synthetic land use classification methods in the north of Iran[J]. International Journal of Environmental Science and Technology, 2015, 12(5):1515-1526.
doi: 10.1007/s13762-014-0728-3
url: http://link.springer.com/10.1007/s13762-014-0728-3
|
[17] |
袁爽, 况润元, 廖启卿. 湿地植被遥感提取及动态变化研究——以崇明东滩为例[J]. 江西理工大学学报, 2018, 39(1):44-51.
|
[17] |
Yuan S, Kuang R Y, Liao Q Q. Remote sensing extraction and dynamic change of wetland vegetation—A case study of eastern Chongming Island[J]. Journal of Jiangxi University of Science and Technology, 2018, 39(1):44-51.
|
[18] |
张俊瑶, 姚永慧, 索南东主, 等. 基于垂直带谱的太白山区山地植被遥感信息提取[J]. 地球信息科学学报, 2019, 21(8):1284-1294.
doi: 10.12082/dqxxkx.2019.180650
|
[18] |
Zhang J Y, Yao Y H, Suonan D Z, et al. Mapping of mountain vegetation in Taibai Mountain based on mountain altitudinal belts with remote sensing[J]. Journal of Geo-information Science, 2019, 21(8):1284-1294.
|
[19] |
陈波, 胡玉福, 喻攀, 等. 基于纹理和地形辅助的山区土地利用信息提取研究[J]. 地理与地理信息科学, 2017, 33(1):1-7.
|
[19] |
Chen B, Hu Y F, Yu P, et al. Research on information extraction of land use in mountainous areas based on texture and terrain[J]. Geography and Geo-Information Science, 2017, 33(1):1-7.
|
[20] |
Bai J H, Li J, Li S K. Monitoring the cotton growth conditions based on LAI from remote sensing and expert knowledge[J]. Advanced Materials Research, 2011:317-319.
|
[21] |
Suchenwirth L, Forster M, Cierjacks A, et al. Knowledge-based classification of remote sensing data for the estimation of below- and above-ground organic carbon stocks in riparian forests[J]. Wetlands Ecology & Management, 2012, 20(2):151-163.
|
[22] |
Pérez-Valladares C X, Velázquez A, Moreno-Calles A I, et al. An expert knowledge approach for mapping vegetation cover based upon free access cartographic data:The Tehuacan-Cuicatlan Valley,Central Mexico[J]. Biodiversity and Conservation, 2019, 28(6):1361-1388..
doi: 10.1007/s10531-019-01723-w
url: https://doi.org/10.1007/s10531-019-01723-w
|
[23] |
林丽群, 汪正祥, 雷耘, 等. 神农架川金丝猴栖息地优势乔木树种遥感识别及其分布特征[J]. 生态学报, 2017, 37(19):6534-6543.
|
[23] |
Lin L Q, Wang Z X, Lei Y, et al. Determination of dominant tree species and effects of tree distribution on the habitat of Rhinopithecus roxellana using Remote Sensing imagery in Shennongjia[J]. Acta Ecologica Sinica, 2017, 37(19):6534-6543.
|
[24] |
任冲. 中高分辨率遥感影像森林类型精细分类与森林资源变化监测技术研究[D]. 北京: 中国林业科学研究院, 2016.
|
[24] |
Ren C. Forest types precise classification and forest resources change monitoring based on medium and high spatial resolution[D]. Beijing: Chinese Academy of Forestry, 2016.
|
[25] |
范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
|
[25] |
Fan D Q, Zhao X S, Zhu W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 2016, 35(3):304-319.
|
[26] |
谷祥辉, 张英, 桑会勇, 等. 基于哨兵2时间序列组合植被指数的作物分类研究[J]. 遥感技术与应用, 2020, 35(3):702-711.
|
[26] |
Gu X H, Zhang Y, Sang H Y, et al. Research on crop classification method based on Sentinel-2 time series combined vegetation Index[J]. Remote Sensing Technology and Application, 2020, 35(3):702-711.
|
[27] |
田艳君, 石莹, 帅艳民, 等. 基于遥感时序特征的地表覆被信息提取[J]. 干旱区地理, 2021, 44(2):1-11.
|
[27] |
Tian Y J, Shi Y, Shuai Y M, et al. Land cover information retrieval from temporal features based remote sensing images[J]. Arid Land Geography, 2021, 44(2):1-11.
|
[28] |
崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1):9-16.
|
[28] |
Cui L L, Shi J, Du H Q. Advances in remote sensing extraction of vegetation phenology and its driving factors[J]. Advances in EarthScience, 2021, 36(1):9-16.
|
[29] |
Jordan C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666.
|
[30] |
包广道, 刘存发, 程岩, 等. 基于植被指数的林地变化检测技术研究[J]. 吉林林业科技, 2020, 49(5):21-26.
|
[30] |
Bao G D, Liu C F, Cheng Y, et al. Research on technique of forest land change detection based on vegetation index[J]. Journal of Jilin Forestry Science and Technology, 2020, 49(5):21-26.
|
[31] |
董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2):73-81.doi: 10.6046/gtzyyg.2019.02.11.
doi: 10.6046/gtzyyg.2019.02.11
|
[31] |
Dong L X. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land and Resources, 2019, 31(2):73-81.doi: 10.6046/gtzyyg.2019.02.11.
doi: 10.6046/gtzyyg.2019.02.11
|
[32] |
Fakhri S A, Sayadi S, Latifi H, et al. An optimized enhanced vegetation index for sparse tree cover mapping across a mountainous region[C]// 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor).IEEE, 2019:146-151.
|
[33] |
季民, 张超, 赵建伟, 等. 基于VCI指数的青藏地区春旱时空动态变化分析[J]. 国土资源遥感, 2021, 33(1):152-157..doi: 10.6046/gtzyyg.2021.0228.
doi: 10.6046/gtzyyg.2021.0228
|
[33] |
Ji M, Zhang C, Zhao J W, et al. Temporal and spatial dynamics of spring drought in Qinghai-Tibet region based on VCI index[J]. Remote Sensing for Land and Resources, 2021, 33(1):152-157.doi: 10.6046/gtzyyg.2021.0228.
doi: 10.6046/gtzyyg.2021.0228
|
[34] |
汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-157.
|
[34] |
Wang X Q, Wang M M, Wang S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-157.
|
[35] |
赵威成, 马福义, 吕利娜, 等. 基于DVI的像元二分模型反演植被覆盖度研究[J]. 黑龙江科技大学学报, 2020, 30(2):125-128.
|
[35] |
Zhao W C, Ma F Y, Lv L N, et al. Study on inversion of FVC based on DVI pixel dichotomous model[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(2):125-128.
|
[36] |
刘瑜, 韩震, 周玮辰. 基于垂直植被指数的湿地植被类型提取研究——以长江口九段沙湿地为例[J]. 遥感信息, 2013, 28(4):81-84.
|
[36] |
Liu Y, Han Z, Zhou W C. Vegetation information extraction in wetland using perpendicular vegetation index—A Case Study in Jiuduansha Wetland of Yangtze River Estuary[J]. Remote Sensing Information, 2013, 28(4):81-84.
|
[37] |
凌成星, 鞠洪波, 张怀清, 等. 基于植被指数比较的湿地区域LAI遥感估算研究[J]. 中南林业科技大学学报, 2016, 36(5):11-18.
|
[37] |
Ling C X, Ju H B, Zhang H Q, et al. Research on remote sensing estimation of wetland vegetation LAI based on vegetation index comparation[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5):11-18.
|
[38] |
李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
|
[38] |
Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing imagefusion[J]. National Remote Sensing Bulletin, 2021, 25(1): 148-166..
|
[39] |
Chang C H, Yita H, Wu S T, et al. Applying image fusion to integrate radar images and SPOT multi-spectral satellite images for forest type classification[J]. Taiwan Journal of Forest Science, 2015, 30(3):201-209.
|
[40] |
Mao X, Deng Y, Zhu L, et al. Hierarchical geographic object-based vegetation type extraction based on multi-source remote sensing data[J]. Forests, 2020, 11(12):1271-1289.
doi: 10.3390/f11121271
url: https://www.mdpi.com/1999-4907/11/12/1271
|
[41] |
白杨, 赵银娣. 基于KPCA和FCM的HJ-1A星遥感数据分类[J]. 国土资源遥感, 2013, 25(1):71-76.doi: 10.6046/gtzyyg.2013.01.13.
doi: 10.6046/gtzyyg.2013.01.13
|
[41] |
Bai Y, Zhao Y D. HJ - 1A satellite remote sensing data classification based on KPCA and FCM[J]. Remote Sensing for Land and Resources, 2013, 25(1):71-76.doi: 10.6046/gtzyyg.2013.01.13.
doi: 10.6046/gtzyyg.2013.01.13
|
[42] |
王体雯, 李涛. 基于多源遥感影像融合的植被覆盖度信息提取研究[J]. 安徽农业科学, 2019, 47(12):146-148.
|
[42] |
Wang T W, Li T. Study on extraction vegetation coverage information based on multi-source remote sensing image[J]. Journal of Anhui Agricultural Sciences, 2019, 47(12):146-148.
|
[43] |
游佩佩. 基于机器学习的江苏滨海湿地植被变化遥感监测[D]. 南京: 南京信息工程大学, 2020.
|
[43] |
You P P. Remote-Sensing monitoring of vegetation change in coastal wetland of Jiangsu Province based on Machine Learning[D]. Nanjing: Nanjing University of Information Science & Technology, 2020.
|
[44] |
Snedden G A. Patterning emergent marsh vegetation assemblages in coastal Louisiana,USA,with unsupervised artificial neural networks[J]. Applied Vegetation Science, 2019, 22(2):213-229.
doi: 10.1111/avsc.12425
|
[45] |
段欣荣, 曹见飞, 张宝雷, 等. 基于卷积神经网络和稳定性选择的农作物植被光谱分析方法[J]. 山东师范大学学报(自然科学版), 2020, 35(1):100-107.
|
[45] |
Duan X R, Cao J F, Zhang B L, et al. Spectral analysis of crop vegetation based convolutional neural network and stability selection[J]. Journal of Shandong Normal University (Natural Science), 2020, 35(1):100-107.
|
[46] |
陈健, 黄泽远. 基于多特征SVM的昆明市城市森林时空分布信息提取[J]. 林业调查规划, 2019, 44(1):75-81.
|
[46] |
Chen J, Huang Z Y. Information extraction of temporal and spatial distribution of urban forest in Kunming based on multi- feature SVM[J]. Forest Inventory and Planning, 2019, 44 (1):75-81.
|
[47] |
田雷, 傅文学, 孙燕武, 等. 基于TM影像的西伯利亚北方森林覆盖度近30a空间变化研究[J]. 国土资源遥感, 2021, 33(1):214-220.doi: 10.6046/gtzyyg.2021178.
doi: 10.6046/gtzyyg.2021178
|
[47] |
Tian L, Fu W X, Sun Y W, et al. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images[J]. Remote Sensing for Land and Resources, 2021, 33(1):214-220.doi: 10.6046/gtzyyg.2021178.
doi: 10.6046/gtzyyg.2021178
|
[48] |
崔小芳, 刘正军. 基于随机森林分类方法和多源遥感数据的湿地植被精细分类[J]. 测绘与空间地理信息, 2018, 41(8):113-116.
|
[48] |
Cui X F, Liu Z J. Wetland vegetation classification based on object-based classification method and multi-source remote sensing images[J]. Geomatics & Spatial Information Technology, 2018, 41(8):113-116.
|
[49] |
许童羽, 胡开越, 周云成, 等. 基于CART决策树和BP神经网络的Landsat8影像粳稻提取方法[J]. 沈阳农业大学学报, 2020, 51(2):169-176.
|
[49] |
Xu T Y, Hu K Y, Zhou Y C, et al. Classification method by fusion of CART decision tree and BP based on Landsat8 image[J]. Journal of Shenyang Agricultural University, 2020, 51(2):169-176.
|
[50] |
谢锦莹. 基于全卷积神经网络结合面向对象的滨海湿地植被遥感动态监测[D]. 杭州: 浙江农林大学, 2019.
|
[50] |
Xie J Y. Remote sensing dynamic monitoring of coastal wetland vegetation based on fully convolutional networks combined with object-oriented method[D]. Hangzhou: Zhejiang A&F University, 2019.
|
[51] |
Mathieu R, Aryal J. Object-oriented classification and Ikonos multispectral imagery for mapping vegetation communities in urban areas[C]// Colloquium of the Spatial Information Research Centre, 2005.
|
[52] |
Zhao P, Zhao J, Wu J, et al. Integration of multi-classifiers in object-based methods for forest classification in the Loess plateau,China[J]. Scienceasia, 2016, 42(4):283-289.
doi: 10.2306/scienceasia1513-1874.2016.42.283
url: http://www.scienceasia.org/content/viewabstract.php?ms=5768
|
[53] |
李春艳. 基于面向对象的遥感影像植被信息提取[J]. 科学技术与工程, 2012, 12(8):1941-1943,1990.
|
[53] |
Li C Y. Object-oriented vegetation information extraction from remote sensing image[J]. Science Technology and Engineering, 2012, 12(8):1941-1943,1990.
|
[54] |
秦泉, 王冰, 李峰, 等. 面向对象的GF-1卫星影像苹果树种植面积遥感提取研究——以山地丘陵地区的栖霞市为例[J]. 沙漠与绿洲气象, 2020, 14(2):129-136.
|
[54] |
Qin Q, Wang B, Li F, et al. Apple planting area extraction from GF-1 remote sensing image based on object-oriented classification method—taking Qixia city in hilly areas as an example[J]. Journal of Desert and Oasis Meteorology, 2020, 14(2):129-136.
|
[55] |
王熊, 胡兵, 韩泽民, 等. 基于GF-2号影像的森林优势树种分类[J]. 湖北林业科技, 2020, 49(1):1-7,76.
|
[55] |
Wang X, Hu B, Han Z M, et al. Dominant tree species specific classified by GF-2 imagery[J]. Hubei Forestry Science and Technology, 2020, 49(1):1-7,76.
|
[56] |
刘蓉姣, 张加龙, 陈培高. 基于混合像元分解的香格里拉市高山松空间分布变化研究[J]. 西北林学院学报, 2021, 36(1):9-17.
|
[56] |
Liu R J, Zhang J L, Chen P G. Spatial distribution changes of the pinus densata forests in Shangri-La city based on mixed pixel decomposition[J]. Journal of Northwest Forestry University, 2021, 36(1):9-17.
|
[57] |
穆亚超. 基于Landsat影像的西北农牧交错带地区植被信息提取[D]. 兰州: 兰州大学, 2017.
|
[57] |
Mu Y C. Vegetation information extraction in the agriculture and pasturage interlaced zone of Northwest China based on Landsat image[D]. Lanzhou: Lanzhou University, 2017.
|
[58] |
吴昌原. 高光谱图像混合像元分解方法研究[D]. 上海: 华东师范大学, 2014.
|
[58] |
Wu C Y. The research on unmixing pixel methods for hyperspectral images[D]. Shanghai: East China Normal University, 2014.
|
[59] |
Dawelbait M, Morari F. Monitoring desertification in a Savannah region in Sudan using Landsat images and spectral mixture analysis[J]. Journal of Arid Environments, 2012(80):45-55.
|
[60] |
陈虹兵, 黄贝贝, 彭道黎. 基于混合像元分解的植被覆盖度模型比较研究[J]. 西北林学院学报, 2018, 33(3):203-207,265.
|
[60] |
Chen H B, Huang B B, Peng D L. Comparison of pixel decomposition models for the estimation of fractional vegetation coverage[J]. Journal of Northwest Forestry University, 2018, 33(3):203-207,265.
|
[61] |
陈利, 林辉, 陶冀. 基于改进端元提纯模型的MODIS森林类型识别研究[J]. 林业资源管理, 2015, 44(2):109-117.
|
[61] |
Chen L, Lin H, Tao J. Spectral unmixing of MODIS data based on improved endmember purification model for forest type identification[J]. Forest Resource Management, 2015, 44(2):109-117.
|
[62] |
贺辉, 胡丹, 余先川. 基于自适应区间二型模糊聚类的遥感土地覆盖自动分类[J]. 地球物理学报, 2016, 59(6):1983-1993.
|
[62] |
He H, Hu D, Yu X C. Land cover classification based on adaptive interval type-2 fuzzy clustering[J]. Chinese Journal of geophysics, 2016, 59(6):1983-1993.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|