Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 258-264     DOI: 10.6046/zrzyyg.2021428
|
A space-based remote sensing service mode based on cloud+ terminals
LONG En(), LYU Shouye(), QIAN Guodong, LIAN Cuiping, YANG Yuke, CHEN Lingyan
Institute of Remote Sensing Information of Beijing, Beijing 100011, China
Download: PDF(1685 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the vigorous development and in-depth application of civilian and commercial satellites, the space-based remote sensing application demands of different users become increasingly complex. However, the current space-based remote sensing services face problems such as single application mode, weak pertinence, and insufficient flexibility. Based on the analysis of the major application demands of various remote sensing users, this study proposed a space-based remote sensing application service mode based on cloud + terminals. This mode covers eight subcategories in three categories, whose characteristics and application process were analyzed and formulated individually. Last, this study presented the potential applications under two typical scenarios, namely single-person independent application and multi-person collaborative application. The results of this study will lay a foundation for the development, construction, and optimization of various space-based remote sensing ground systems and further improve the space-based remote sensing service capabilities for different users, different application demands, and different application scenarios.

Keywords space-based remote sensing      cloud + terminal      application need      service mode      application process     
ZTFLH:  TP751.1  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
En LONG
Shouye LYU
Guodong QIAN
Cuiping LIAN
Yuke YANG
Lingyan CHEN
Cite this article:   
En LONG,Shouye LYU,Guodong QIAN, et al. A space-based remote sensing service mode based on cloud+ terminals[J]. Remote Sensing for Natural Resources, 2023, 35(1): 258-264.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021428     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/258
应用类型 应用需求
应用用户 不同层级 国家部委用户、省市级用户、地县级用户、企业用户等
不同类别 政府部门、科研研所、院校机构、企业用户等
任务需求 常规保障 时效需求: 通常优于72 h,即从受领任务至提供产品在12~72 h内完成
内容需求: 影像数据、文字报告、点位信息、地形图及矢量数据、专题图等
专项保障 时效需求: 一般较强计划性,会根据任务需求实行定制保障,时效不一
内容需求: 影像数据、专题分析图(如洪水、覆冰、滑坡、泥石流等、罂粟种植区、违建信息等)及矢量信息、系列比例尺地图、对象特征(性质、位置、要害部位等属性信息)、数据切片、声像类产品等
灾害应急
保障
时效需求: 要求较高,数据类产品一般为近实时保障,文字报告产品一般优于24 h
内容需求: 一般多需实时影像数据、气象条件及基础地理信息等,时相要求高。如灾害或突发区域影像图、重要设施位置图、救援力量部署信息、人员及财产受损情况、救援进展动向情况、受灾评估、大比例尺地形图、救援区域植被覆盖、道路通行能力、安置区域等信息
场景需求 陆环境 平原场景需求: 标准影像、地图,正射影像、专题成果、数字高程模型(digital elevation model,DEM),道路、河流水系、土质、居民地、交通枢纽等
丘陵场景需求: 影像、道路、河流水系、坡度、高地、植被、通视、高程等
山地场景需求: 影像、道路(山区小路)、河流山谷、高程、坡度、通视、高地鞍息、冲沟陡崖、植被、方位等
沙漠戈壁场景需求: 影像、绿洲、道路、干河床、方位息、高程等信息
水网场景需求: 影像、河流湖泊息、船舶通行、桥梁渡口、季节、居民地等信息;
山林场景需求: 影像、道路(山区小路)、植被、河流山谷、方位、坡度、通视、居民地、高程等信息
城市场景需求: 影像、城市、重要建筑物、道路(关键街道)、高地等信息
海环境 海岸带场景需求: 影像,濒海标注、周边陆地与岛屿分布、岸滩质地、地表情况、海滩状态、陆地植被、道路等近海岸信息等
近海场景需求: 影像、近海战场周边陆地与岛屿分布、近海特性(海水特性/岸滩质地/地表情况/障碍情况)、海区情况(面积/形状与开放程度—)、海底情况(地形/底质/海峡/通道及港湾分布等)
远海场景需求: 卫星像、濒海标注材料、周边陆地与岛屿分布\海图、潮汐资料、航海通告等
内容需求 数据需求 成像遥感数据产品: 1级产品、2级产品、3级产品、4级产品、5级产品、6级产品
气象遥感数据产品: 值预报产品、卫星云图、雷达资料、热带气旋、灾害天气信息、气候产品等气象数据
地理信息产品: 海域及海陆的划界、海底地形及海洋地质等
产品需求 文字类产品: 刊物类产品、趋势类产品等
测绘类产品: 地理信息产品、各系列比例尺地图、正射影像、镶嵌影像、专题产品
气象类产品: 天气形势预报产品、气象要素预报产品、海洋物理要素产品等
定制化产品: 地理环境定制化产品、设施评估类产品等
Tab.1  The main application requirements of remote sensing
Fig.1  The main service mode composition of pace-based remote sensing based on cloud + terminal
Fig.2  Application process of subscription service
Fig.3  Application process of emergency service
Fig.4  Application process of online application service
Fig.5  Application process of standard interface service
Fig.6  Application process of interest recommendation
服务模式 特点 执行方式 适用范围
分发
服务
模式
点播 针对性强
面向少量用户
事件驱动
系统自动执行
突发事件
组播 方向性强
面向特定用户组
事件驱动
系统自动执行
突发事件
区域环境
广播 面向所有用户 系统自动执行 区域环境
主动
推送
模式
订阅
推送
针对性强
时效性高
用户驱动
系统自动执行
区域环境
应急
推送
需对信息分析
时效性高
事件驱动
系统自动执行
突发事件
互动
共享
模式
在线
应用
需要用户探索
针对性由用户经验和对天基遥感的了解决定
时效性弱
用户在线查询
用户在线浏览
历史信息
标准
接口
用户需了解接口
针对性较强
时效性强
用户在线访问
功能执行
信息处理等
接口功能
兴趣
推荐
需画像模型支持
针对性强
时效性强
用户在线查询,系统立即推荐响应,交互迭代执行 新用户
Tab.2  Comparison of each service model
[1] 李晨辉, 郝利娜, 许强, 等. 基于面向对象的高分辨率遥感影像地震滑坡分层识别[J/OL]. 自然资源遥感, https://kns.cnki.net/kcms/detail/10.1759.P.20220707.1106.022.html.
url: https://kns.cnki.net/kcms/detail/10.1759.P.20220707.1106.022.html
[1] Li C H, Hao L N, Xu Q, et al. Object-oriented earthquake-induced landslide hierarchical recognition based on high-resolution remote sensing images[J/OL]. Remote Sensing for Natural Resources, https://kns.cnki.net/kcms/detail/10.1759.P.20220707.1106.022.html.
url: https://kns.cnki.net/kcms/detail/10.1759.P.20220707.1106.022.html
[2] 董继红, 马志刚, 梁京涛, 等. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3):73-81.doi:10.6046/zrzyyg.2021333.
doi: 10.6046/zrzyyg.2021333
[2] Dong J H, Ma Z G, Liang J T, et al. Comparative study of landslide hidden danger identification based on time-series InSAR technology[J] Remote Sensing for Natural Resources, 2022, 34(3):73-81.doi:10.6046/zrzyyg.2021333.
doi: 10.6046/zrzyyg.2021333
[3] 杨显华, 魏鹏, 吕军, 等. 基于多源遥感的采空塌陷识别技术应用研究[J]. 自然资源遥感, 2022, 34(2):162-167.doi:10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
[3] Yang X H, Wei P, Lyu J, et al. Application of mining collapse recognition technology based on multi-source remote sensing[J] Remote Sensing for Natural Resources, 2022, 34(2):162-167.doi:10.6046/zrzyyg.2021195.
doi: 10.6046/zrzyyg.2021195
[4] 刘文, 王猛, 宋班, 等. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1):265-276.doi:10.6046/zrzyyg.2021076.
doi: 10.6046/zrzyyg.2021076
[4] Liu W, Wang M, Song B, et al. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology:A case study of southeast Tibet[J] Remote Sensing for Natural Resources, 2022, 34(1):265-276.doi:10.6046/zrzyyg.2021076.
doi: 10.6046/zrzyyg.2021076
[5] 李德仁, 沈欣, 李迪龙, 等. 论军民融合的卫星通信、遥感、导航一体天基信息实时服务系统[J]. 武汉大学学报·信息科学版, 2017, 42(11):1501-1505.
[5] Li D R, Shen X, Li D L, et al. On Civil-military integrated spaced-based real-time information service system[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11):1501-1505.
[6] 张满超, 王犇. 天基资源信息服务体系构建[J]. 指挥信息系统与技术, 2017, 8(5):62-69.
[6] Zhang M C, Wang B. Construction of space-based resource information service system[J]. Command Information System and Technology, 2017, 8(5):62-69.
[7] 李德仁. 论“互联网+”天基信息服务[J]. 遥感学报, 2016, 20(5):708-715.
[7] Li D R. The “Internet Plus” space-based information services[J]. Journal of Remote Sensing, 2016, 20(5):708-715.
[8] 管清波, 冯书兴, 马彦华. 天基信息服务模式研究[J]. 装备学院学报, 2012, 23(6):66-70.
[8] Guan Q B, Feng S X, Ma Y H. Research on mode of space-based intelligence service[J]. Journal of Academy of Equipment, 2012, 23(6):66-70.
[9] 李德仁, 丁霖, 邵振峰. 面向实时应用的遥感服务技术[J]. 遥感学报, 2021, 25(1):15-24.
[9] Li D R, Ding L, Shao Z F. Application-oriented real-time remote sensing service technology[J]. National Remote Sensing Bulletin, 2021, 25(1):15-24.
[10] 柳罡, 陆洲, 胡金晖. 基于云架构的天基信息应用服务系统设计[J]. 中国电子科学研究院学报, 2018, 13(5):526-531.
[10] Liu G, Lu Z, Hu J H, et al. Study on the spatial information service system based on cloud architecture[J]. Journal of CAEIT, 2018, 13(5):526-531.
[11] 胡金晖, 秦智超, 石磊. 空间信息云服务平台架构及应用研究[J]. 中国电子科学研究院学报, 2016,(1):51-58.
[11] Hu J H, Qin Z C, Shi L, et al. Research on spatial information cloud service platform and application[J]. Journal of CAEIT, 2016,(1):51-58.
[12] 李德仁, 沈欣. 我国天基信息实时智能服务系统发展战略研究[J]. 中国工程科学, 2020, 22(2):138-143.
[12] Li D R, Shen X. Research on the development strategy of real-time and intelligent space-based information service system in China[J]. Chinese Engineering Science, 2020, 22(2):138-143.
[13] 史园莉, 孙中平, 姜俊, 等. 环境遥感云服务平台与高性能平台对比分析[J]. 国土资源遥感, 2019, 31(2):240-245.doi:10.6046/gtzyyg.2019.02.33.
doi: 10.6046/gtzyyg.2019.02.33
[13] Shi Y L, Sun Z P, Jiang J, et al. Comparison and analysis of cloud service platform and high performance platform for environmental remote sensing[J]. Remote Sensing for Land and Resources, 2019, 31(2):240-245.doi:10.6046/gtzyyg.2019.02.33.
doi: 10.6046/gtzyyg.2019.02.33
[14] 程滔. 大数据时代遥感数据管理与服务模式[J]. 国土资源遥感, 2016, 28(4):202-206.doi:10.6046/gtzyyg.2016.04.31.
doi: 10.6046/gtzyyg.2016.04.31
[14] Cheng T. Exploring management and service mode for remote sensing data in big data era[J]. Remote Sensing for Land and Resources, 2016, 28(4):202-206.doi:10.6046/gtzyyg.2016.04.31.
doi: 10.6046/gtzyyg.2016.04.31
[15] 龙恩, 吕守业, 岑鹏瑞, 等. 顾及用户画像的多源遥感信息智能推荐方法[J]. 测绘学报. http://kns.cnki.net/kcms/detail/11.2089.p.20220530.1711.004.html.
url: http://kns.cnki.net/kcms/detail/11.2089.p.20220530.1711.004.html
[15] Long E, Lyu S Y, Cen P R, et al. An Intelligent Recommendation Method of Multi-Source Remote Sensing Information Considering User Portrait[J]. Acta Geodaetica et Cartographica Sinica. http://kns.cnki.net/kcms/detail/11.2089.p.20220530.1711.004.html.
url: http://kns.cnki.net/kcms/detail/11.2089.p.20220530.1711.004.html
[16] 王密, 仵倩玉. 面向星群的遥感影像智能服务关键问题[J]. 测绘学报, 2022, 51(6):1008-1016.
[16] Wang M, Wu Q Y. Key problems of remote sensing images intelligent service for constellation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):1008-1016.
[1] LIU Guangjin, WANG Guanghui, BI Weihua, LIU Huijie, YANG Huachao. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2): 88-96.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[4] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[5] WEI Hongyu, ZHAO Yindi, DONG Jihong. Cooling tower detection based on the improved RetinaNet[J]. Remote Sensing for Land & Resources, 2020, 32(4): 68-73.
[6] LIU Shangwang, CUI Zhiyong, LI Daoyi. Multi-task learning for building object semantic segmentation of remote sensing image based on Unet network[J]. Remote Sensing for Land & Resources, 2020, 32(4): 74-83.
[7] Kaixuan LIANG, Guifang ZHANG, Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
[8] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[9] Liuqing WU, Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
[10] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[11] Yitian WU, Fu CHEN, Yong MA, Jianbo LIU, Xinpeng LI. Research on automatic extraction method for coastal aquaculture area using Landsat8 data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 96-105.
[12] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[13] Jun YANG, Jianjie PEI. An improved ICM algorithm for remote sensing image segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(3): 18-25.
[14] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[15] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech