Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 102-107     DOI: 10.6046/gtzyyg.2020090
|
A deep learning method for Landsat image cloud detection without manually labeled data
QIU Yifan(), CHAI Dengfeng()
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Download: PDF(2666 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Cloud and cloud shadow detection is an important part in the production of Landsat images. In recent years, deep learning has greatly improved the accuracy of cloud detection in Landsat images. However, deep convolutional neural network model training relies on a large scale of labeled images, and it is necessary to manually label each pixel as clearness, cloud or cloud shadow. Manually labeling is rather costly and time-consuming, which is not conducive to train practical models. Inspired by weakly supervised learning, this paper proposes a new deep learning method for cloud and cloud shadow detection. Firstly, conventional cloud detection algorithm CFMask is used to detect cloud and cloud shadow in Landsat images. Then, the results are used to replace the manually labeled images to train the deep convolutional neural network model for cloud detection. Finally, the model is used to detect the cloud and its shadow in new images. Experimental results show that the overall accuracy of the proposed method is 85.55%, which is better than that of CFMask and indicates that it is feasible to train the deep network model to detect cloud and cloud shadow without manually labeled data.

Keywords cloud and cloud shadow detection      Landsat8 image      convolutional neural network      semantic segmentation     
ZTFLH:  TP751.1  
Corresponding Authors: CHAI Dengfeng     E-mail: rs_qyf@zju.edu.cn;chaidf@zju.edu.cn
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yifan QIU
Dengfeng CHAI
Cite this article:   
Yifan QIU,Dengfeng CHAI. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020090     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/102
位信息 含义 位信息 含义
0 填充 8 云阴影置信度
1 地形遮蔽 9 雪/冰置信度
2 辐射饱和 10 雪/冰置信度
3 辐射饱和 11 卷云置信度
4 12 卷云置信度
5 云置信度 13
6 云置信度 14
7 云阴影置信度 15
Tab.1  Landsat8 Collection 1 Level 1 quality band bit designations
样本集 训练样本集 验证样本集 测试样本集
子景总量 6 396 1 575 3 966
切割图像总量 70 356 17 325 43 626
按生物群落子景数量统计 荒地 996 244 242
森林 610 150 749
灌木地 509 125 871
草地/农田 799 198 485
雪/冰 680 168 618
城市 898 221 378
湿地 803 196 499
水域 1 101 273 124
Tab.2  The number of subscenes and images in sample set
Fig.1  Technical flowchart of experimental scheme
Fig.2  Network structure based on SegNet
Tab.3  Cloud and cloud shadow detection results
指标 类别 本文方法 CFMask
F1分数 78.14 77.39
云阴影 43.86 41.84
无云 90.62 89.87
总体精度 85.55 84.27
Tab.4  Evaluation of detection results(%)
[1] Foga S, Scaramuzza P L, Guo S, et al. Cloud detection algorithm comparison and validation for operational Landsat data products[J]. Remote Sensing of Environment, 2017,194:379-390.
doi: 10.1016/j.rse.2017.03.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717301293
[2] Ju J, Roy D P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally[J]. Remote Sensing of Environment. 2008,112(3):1196-1211.
doi: 10.1016/j.rse.2007.08.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425707004002
[3] Rossow W B, Schiffer R A. Advances in understanding clouds from ISCCP[J]. Bulletin of the American Meteorological Society, 1999,80(11):2261-2287.
doi: 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2 url: http://journals.ametsoc.org/doi/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
[4] Fisher A. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automated morphological feature extraction[J]. Remote Sensing, 2014,6(1):776-800.
doi: 10.3390/rs6010776 url: http://www.mdpi.com/2072-4292/6/1/776
[5] Zhu Z, Woodcock C E. Automated cloud,cloud shadow,and snow detection in multitemporal Landsat data:An algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014,152:217-234.
doi: 10.1016/j.rse.2014.06.012 url: http://dx.doi.org/10.1016/j.rse.2014.06.012
[6] Zhu Z, Woodcock C E. Object-based cloud and cloud shadow detection in Landsat imagery[J]. Remote Sensing of Environment, 2012,118:83-94.
doi: 10.1016/j.rse.2011.10.028 url: http://dx.doi.org/10.1016/j.rse.2011.10.028
[7] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats 4,7,8,and Sentinel 2 images[J]. Remote Sensing of Environment, 2015,159:269-277.
doi: 10.1016/j.rse.2014.12.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714005069
[8] Irish R R, Barker J L, Goward S N, et al. Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(10):1179-1188.
doi: 10.14358/PERS.72.10.1179 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=72&issue=10&spage=1179
[9] Hagolle O, Huc M, Pascual D V, et al. A multi-temporal method for cloud detection, applied to FORMOSAT-2,VENμS,Landsat and Sentinel-2 images[J]. Remote Sensing of Environment, 2010,114(8):1747-1755.
doi: 10.1016/j.rse.2010.03.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710000908
[10] Molnar G, Coakley J A. Retrieval of cloud covee fromsatelltte imagery data-a statistical approach[J]. Journal of Geophysical Research-Atomspheres, 1985,90(D7):2960-2970.
[11] Ricciardelli E, Romano F, Cuomo V. Physical and statistical approaches for cloud identification using meteosat second generation-spinning enhanced visible and infrared imager data[J]. Remote Sensing of Environment, 2008,112(6):2741-2760.
[12] Amato U, Antoniadis A, Cuomo V, et al. Statistical cloud detection from SEVIRI multispectral images[J]. Remote Sensing of Environment, 2008,112(3):750-766.
[13] Zi Y, Xie F, Jiang Z. A cloud detection method for Landsat8 images based on PCANet[J]. Remote Sensing, 2018,10(6):877.
[14] Xie F, Shi M, Shi Z, et al. Multilevel cloud detection in remote sensing images based on deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(8):3631-3640.
[15] Chai D, Newsam S, Zhang H K, et al. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks[J]. Remote Sensing of Environment, 2019,225:307-316.
[16] Zhou Z. A brief introduction to weakly supervised learning[J]. National Science Review, 2018,5(1):44-53.
[17] Deselaers T, Alexe B, Ferrari V. Weakly supervised localization and learning with generic knowledge[J]. International Journal of Computer Vision, 2012,100(3):275-293.
[18] U.S.Geological Survey. L8 biome cloud validation masks[DB/OL].[2020-04-01]. http://dx.doi.org/10.5066/F79Z930Q.
url: http://dx.doi.org/10.5066/F79Z930Q
[19] U.S.Geological Survey. Landsat collection 1 level-1 quality assessment band[EB/OL].[2020-04-01].https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band.
url: https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band
[20] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
pmid: 28060704 url: https://www.ncbi.nlm.nih.gov/pubmed/28060704
[21] Ruder S.An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2020-04-01] https://arxiv.org/abs/1609.04747.
url: https://arxiv.org/abs/1609.04747
[22] Kingma D P, Ba J. Adam:A method for stochastic optimization[EB/OL]. (2017-01-30)[2020-04-01] https://arxiv.org/abs/1412.6980.
url: https://arxiv.org/abs/1412.6980
[1] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[2] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[3] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[4] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[5] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[6] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[7] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[8] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[9] YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2): 224-230.
[10] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[11] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[12] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[13] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[14] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[15] LIU Zhao, ZHAO Tong, LIAO Feifan, LI Shuai, LI Haiyang. Research and comparative analysis on urban built-up area extraction methods from high-resolution remote sensing image based on semantic segmentation network[J]. Remote Sensing for Land & Resources, 2021, 33(1): 45-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech