Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 271-276     DOI: 10.6046/zrzyyg.2022091
|
Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting
WANG Ping()
China TOPRS Technology Co., Ltd., Beijing 100039, China
Download: PDF(3225 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The monitoring of iron and steel enterprises through manual field supervision is time-consuming and labor-intensive. To address this problem, this study proposed identifying the high-temperature anomalous areas based on satellite-carried thermal infrared sensors. Then, based on conventional remote sensing interpretation combined with thermal infrared anomaly monitoring and the quasi-synchronous data of March to May in the first quarter, as well as the scope of existing iron and steel enterprises and high-resolution images of the same period, this study extracted information on suspected iron and steel enterprises/low-quality steel enterprises according to the thermal infrared threshold and the thermal anomaly distribution. Subsequently, interpretation symbols were constructed according to the medium- to high-resolution digital orthophoto maps (DOMs), and anomaly areas were identified by overlapping the map spots of existing iron and steel enterprises/low-quality steel enterprises. Finally, the monitoring results of the new method were tested using existing project results, forming the monitoring comparison results of steel overcapacity cutting. As a result, the comprehensive detection accuracy was 88.15%. The results of this study show that the Landsat8 data with a thermal infrared band of 10.6~11.19 μm can effectively monitor the high-temperature anomalies of iron and steel enterprises. Therefore, this band can be selected for future thermal anomaly monitoring based on thermal infrared remote sensing. This study is designed to explore more extensive data sources for monitoring steel overcapacity cutting and to provide approaches to solve the possible data bottlenecks and emergency monitoring problems. It can be used as a reference for guiding both project production and remote sensing monitoring of steel overcapacity cutting.

Keywords thermal infrared sensor      thermal infrared remote sensing      steel overcapacity cutting      thermal anomaly detection     
ZTFLH:  TP79  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ping WANG
Cite this article:   
Ping WANG. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022091     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/271
Fig.1  Technology roadmap
Fig.2  Radiant temperature image
Fig.3  BJ-2 images and brightness temperature images of typical ground objects
Fig.4  Comparison of BJ-2 images, thermal anomaly maps and thermal infrared reflectance maps
Fig.5  Abnormal heat in steel industry
Fig.6  Comparison of monitoring results of high temperature anomaly area
监测类型 Landsat8
TIRS结果/个
项目监测
结果/个
未生产/
正确率/
%
高温异常点 119 135 88.15
已知钢铁企业 50 58 8
已知“地条钢”企业 8 12 4
新增钢铁企业 1 1
新增“地条钢”企业 7 8
新增其他企业 53
Tab.1  Comparison of monitoring results
[1] 张爱因, 张晓丽. Landsat8地表温度反演及其与MODIS温度产品的对比分析[J]. 北京林业大学学报, 2019, 41(3):1-13.
[1] Zhang A Y, Zhang X L. Land surface temperature retrieved from Landsat8 and comparison with MODIS temperature product[J]. Journal of Beijing Forestry University, 2019, 41(3):1-13.
[2] Synder W C, Wan Z, Zhang Y. Classification-based emissivity for land surface temperature measurement fromspace[J]. International Journal of Remote Sensing, 1998, 19(14):2753-2774.
doi: 10.1080/014311698214497 url: https://www.tandfonline.com/doi/full/10.1080/014311698214497
[3] Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment, 2013, 131:14-37.
doi: 10.1016/j.rse.2012.12.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004749
[4] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015, 58(3):741-747.
[4] Xu H Q. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite[J]. Chinese Journal of Geophysics, 2015, 58(3):741-747.
[5] Qin Z, Karnieli A, Berliner P. A mono-window algorithmfor retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
doi: 10.1080/01431160010006971 url: https://www.tandfonline.com/doi/full/10.1080/01431160010006971
[6] 张玉君. Landsat8简介[J]. 国土资源遥感, 2013, 25(1):176-177.
[6] Zhang Y J. Landsat8 introduction[J]. Remote Sensing for Land and Resources, 2013, 25(1):176-177.
[7] Schmugge T, Hook S J, Coll C. Recovering surface temperature and emissivity from thermal infrared multispectral data[J]. Remote Sensing of Environment, 1998, 65(2):121-131.
doi: 10.1016/S0034-4257(98)00023-6 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000236
[8] 杨佩国, 胡俊锋, 刘睿. HJ-1B卫星热红外遥感影像农田地表温度反演[J]. 测绘科学, 2013, 181(1):60-62.
[8] Yang P G, Hu J F, Liu R. Land surface temperature retrieval method in farmland area for HJ-1B IRS4[J]. Science of Surveying and Mapping, 2013, 181(1):60-62.
[9] 陈峰, 殷守敬, 朱利, 等. HJ-1B热红外辐射定标对地表温度反演的影响[J]. 遥感学报, 2016, 20(4):601-609.
[9] Chen F, Yin S J, Zhu L, et al. Radiometric calibration of the HJ-1B thermal channel and its effects on land surface temperature retrieval[J]. National Remote Sensing Bulletin, 2016, 20(4):601-609.
[10] 朱亚静, 邢立新, 潘军, 等. 短波红外遥感高温地物目标识别方法研究[J]. 遥感信息, 2011(6):33-36.
[10] Zhu Y J, Xing L X, Pan J, et al. Method of identifying high-temperature target using shortwave infrared remote sensing data[J]. Remote Sensing Information, 2011(6):33-36.
[11] Van de Griend A A, Owe M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces[J]. International Journal of Remote Sensing, 1993, 14(6):1119-1131.
doi: 10.1080/01431169308904400 url: https://www.tandfonline.com/doi/full/10.1080/01431169308904400
[12] 陈良富, 徐希孺. 热红外遥感中大气下行辐射效应的一种近似计算与误差估计[J]. 遥感学报, 1999, 3(3):165-l70.
[12] Chen L F, Xu X R. An approximate numeration and error estimation on atmospheric downward radiance effectin thermal infrared remote sensing[J]. Journal of Remote Sensing, 1999, 3(3):165-l70.
[13] 陈鹏飞, 卢力, 朱华忠, 等. 不同分辨率遥感影像的钢铁厂识别适宜性研究[J]. 地球信息科学, 2015, 17(9):1119-1127.
[13] Chen P F, Lu L, Zhu H Z, et al. Research on the suitability of image at different resolutions for the identification of steel enterprise using remote sensing[J]. Journal of Geo-Information Science, 2015, 17(9):1119-1127.
[14] 田国良, 柳钦火, 陈良富. 热红外遥感[M]. 北京: 电子工业出版社, 2014:5-13.
[14] Tian G L, Liu Q H, Chen L F. Thermal remote sensing[M]. Beijing: Publishing House of Electronics Industry, 2014:5-13.
[15] Andersen H S. Land surface temperature estimation based on NOAA-AVHRR data during the HAPEX-Sahel experiment[J]. Journal of Hydrology, 1997,188-189:788-814.
[16] Prata A J, Caselles V, Coll C, et al. Thermal remote sensing of land surface temperature from satellites:Current status and future prospects[J]. Remote Sensing Reviews, 1995, 12(3):175-224.
doi: 10.1080/02757259509532285 url: http://www.tandfonline.com/doi/abs/10.1080/02757259509532285
[17] 李特雅, 宋妍, 于新莉, 等. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4):121-129.doi:10.6046/zrzyyg.2020399.
doi: 10.6046/zrzyyg.2020399
[17] Li T Y, Song Y, Yu X L, et al. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4):121-129.doi:10.6046/zrzyyg.2020399.
doi: 10.6046/zrzyyg.2020399
[1] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[2] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[3] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[4] Hanyue CHEN, Li ZHU, Jiaguo LI, Xieyu FAN. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land & Resources, 2018, 30(1): 45-53.
[5] GUAN Zhen, WU Hong, CAO Cui, HUANG Xiaojuan, GUO Lin, LIU Yan, HAO Min. Uranium ore prediction based on inversion of ETM+6-γ mineral information in Huashan granite area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 92-98.
[6] WEN Shaoyan, QU Chunyan, SHAN Xinjian, YAN Lili, SONG Dongmei. Satellite thermal infrared background field variation characteristics of the Qilian Mountains and the Capital Zone[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 138-144.
[7] MA Hong-Zhang, LIU Qin-Huo, WEN Jian-Guang, SHI Jian. The Numerical Simulation and Difference Analysis of Soil Temperature on Thermal Infrared and L Bands[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 26-32.
[8] XU Yong-Meng, QIN Zhi-Hao, WAN Hong-Xiu.
Advances in the Study of Near Surface Air Temperature Retrieval from Thermal Infrared Remote Sensing
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 9-14.
[9] YU Yan-Mei, GAN Fu-Ping, ZHOU Ping, YAN Bo-Kun. A PRELIMINARY STUDY AND APPLICATION OF THE MARTIAN MINERAL MAPPING METHODS BASED
ON THERMAL INFRARED REMOTE SENSING DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 35-39.
[10] CHEN Feng, HE Bao-Yin, LONG Zhan-Yong, YANG Xiao-Qin. A SPATIAL ANALYSIS OF URBAN HEAT ISLAND AND UNDERLYING SURFACE USING LANDSAT ETM+[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 56-61.
[11] LIU Ji-Ping, ZHU Hai-Yan. THE DETECTION OF THERMAL FIELD CHANGE IN URBAN AND SUBURBAN AREAS OF WUHAN CITY
WITH TM/ETM+ DATA AND AN ANALYSIS OF THE AFFECTING FACTORS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(2): 39-41.
[12] GAN Fu-Ping, CHEN Wei-Chao, ZHANG Xu-Jiao, YAN Bai-Kun, LIU Sheng-Wei, YANG Su-Ming. THE PROGRESS IN THE STUDY OF THERMAL INFRARED REMOTE
SENSING FOR RETRIEVING LAND SURFACE TEMPERATURE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(1): 6-11.
[13] Zhang Renhua . SOME THINKING ON QUANTIATIVE THERMAL INFRARED REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(1): 1-6.
[14] Zhou Yanru . THE APPLICATION OF THERMAL INFRARED REMOTE SENSING TECHNIQUES IN GEOTHERMAL SURVEYING[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(4): 24-28.
[15] Zhou Yanru, Wang Xiaohong . USING AIRBORNE THERMAL INFRARED REMOTE SENSING TECHNIQUES TO DETECT UNDERGROUND OIL PIPELINES[J]. REMOTE SENSING FOR LAND & RESOURCES, 1998, 10(3): 86-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech