Please wait a minute...
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 45-53     DOI: 10.6046/gtzyyg.2018.01.07
Orginal Article |
A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station
Hanyue CHEN1,2,3(), Li ZHU4, Jiaguo LI5, Xieyu FAN1,2,3
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. Key Laboratory of Soil Ecosystem Health and Regulation in Fujian Higher Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3. Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou 350002, China
4. Satellite Environment Center, Ministry of Environment Protection, Beijing 100094, China
5. Institute of Remote Sensing and Digital Earth Applications, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(1052 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Two mono-window algorithms, i.e., radiation transfer model (RTM) and QK&B algorithm, were evaluated and compared for their performance on sea surface temperature (SST) calculation from Landsat8/TIRS data in coastal water of Hongyan River nuclear power station. The parameters of QK&B algorithm were modified for Landsat8 thermal infrared band 10 based on thermodynamic initial guess retrieval (TIGR) atmospheric profile data, and both atmospheric transmittance values obtained from water vapor content based on empirical model and from National Centers for Environmental Prediction (NCEP) data were employed for QK&B algorithm respectively with the purpose of comparing their feasibilities for SST retrieval. A validation with shipboard measurements of SST collected synchronically shows that the slightly better accuracy in SST retrieval is observed from RTM method (RMSE = 0.525 0) than from modified QK&B algorithm (RMSE = 0.638 0). QK&B algorithm using atmospheric transmittance simulated using NCEP data provided better accuracy than that using atmospheric transmittance estimated from water vapor content. Sensitivity analysis based on data simulated by MODTRAN4.0 using NCEP data was conducted. The results show that atmospheric transmittance has the greatest impact on the accuracy of SST retrieval among all parameters input RTM method, followed by atmospheric upward radiation. Atmospheric transmittance also shows greater sensitivity for RTM method than that for QK&B algorithm. For QK&B algorithm, atmospheric average temperature has greater impact on SST retrieval than other parameters input. Atmospheric upward radiation for RTM method, atmospheric average temperature for QK&B algorithm and atmospheric transmittance for both two algorithms show increasing impact on SST retrieval with increasing water vapor content.

Keywords sea surface temperature      Landsat8      mono-window algorithm      sensitivity analysis      thermal infrared remote sensing     
:  TP79  
Issue Date: 08 February 2018
E-mail this article
E-mail Alert
Articles by authors
Hanyue CHEN
Jiaguo LI
Xieyu FAN
Cite this article:   
Hanyue CHEN,Li ZHU,Jiaguo LI, et al. A comparison of two mono-window algorithms for retrieving sea surface temperature from Landsat8 data in coastal water of Hongyan River nuclear power station[J]. Remote Sensing for Land & Resources, 2018, 30(1): 45-53.
URL:     OR
Fig.1  Distribution of validation points
Fig.2  Fitted curves of τ and ω of Landsat8 TIRS_B10
TIGR τ估算方程 R2 RMSE
中纬度夏季 τ=0.001 4ω3-0.009 5ω3-0.098 9ω+0.985 7 0.971 3 0.013 1
中纬度冬季 τ=0.002 1ω3-0.015 1ω3-0.089 6ω+0.981 0 0.966 1 0.008 0
中纬度综合 τ=0.001 9ω3-0.012 6ω3-0.093 6ω+0.982 8 0.964 4 0.011 9
Tab.1  τ estimating equation for Landsat8 TIRS_B10
Fig.3  Fitted curves of Ta and T1
TIGR Ta估算方程 R2
中纬度夏季 Ta=0.711 4T1+73.662 0 0.864 1
中纬度冬季 Ta=0.660 6T1+85.171 0 0.780 9
中纬度综合 Ta=0.739 1T1+65.068 0 0.850 9
Tab.2  Ta estimating equation
Fig.4  Distributions of SST derived from TIRS_B10
Fig.5  Comparison of absolute error for different algorithms
评价指标 RTM QK&B1 QK&B2
平均误差 0.414 0.532 1.078
最大误差 1.751 1.884 0.828
最小误差 -0.885 -1.058 -3.235
RMSE 0.525 0.638 1.257
Tab.3  Accuracy of SST(℃)
Fig.6  Comparison between SST retrieved by algorithm and shipboard measurement of SST
Fig.7  Sensitivity analysis results of four parameters employed in RTM algorithm
Fig.8  Sensitivity analysis results of three parameters employed in QK&B algorithm
[1] 周旋,杨晓峰,程亮,等.单通道物理法反演海表温度的参数敏感性分析及验证[J].红外与毫米波学报,2012,31(1):91-96.
[1] Zhou X,Yang X F,Cheng L,et al.Sensitivity analysis and validation of the single channel physical method for retrieving sea surface temperature[J].Journal of Infrared and Millimeter Waves,2012,31(1):91-96.
[2] 林昭进,詹海刚.大亚湾核电站温排水对邻近水域鱼卵、仔鱼的影响[J].热带海洋,2000,19(1):44-51.
[2] Lin Z J,Zhan H G.Effects of thermal effluent on fish eggs and larvae in waters near Daya Bay nuclear plant[J].Tropic Oceanology,2000,19(1):44-51.
[3] Wang Y S,Lou Z P,Sun C C,et al.Ecological environment changes in Daya Bay,China,from 1982 to 2004[J].Marine Pollution Bulletin,2008,56(11):1871-1879.
[4] Wang Z H,Zhao J G,Zhang Y J,et al.Phytoplankton community structure and environmental parameters in aquaculture areas of Daya Bay,South China Sea[J].Journal of Environmental Sciences,2009,21(9):1268-1275.
[5] Chuang H H,Tseng R S.Remote sensing of SST around the outfall of a power plant from Landsat and NOAA satellite[J].Journal of Photogrammetry and Remote Sensing,1998,3(2):17-45.
[6] Tang D L,Kester D R,Wang Z D,et al.AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay,nuclear power station,China[J].Remote Sensing of Environment,2003,84(4):506-515.
[7] 张彩,朱利,贾祥,等.不同空间分辨率热红外数据在近海核电厂温排水监测一致性研究[J].遥感信息,2015,30(2):71-76.
[7] Zhang C,Zhu L,Jia X,et al.Consistency of different spatial resolution thermal infrared data in monitoring thermal discharge of nuclear power plant in coastal area[J].Remote Sensing Information,2015,30(2):71-76.
[8] 覃志豪,Zhang M H,Karnieli A,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466.
[8] Qin Z H,Zhang M H,Karnieli A,et al.Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J].Acta Geographica Sinica,2003,56(4):456-466.
[9] Jiménez-Muñoz J C,Sobrino J A.A generalized single-channel method for retrieving land surface temperature from remote sensing data[J].Journal of Geophysical Research,2003,108(D22):4688.
[10] Qin Z H,Karnieli A.Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data[J].International Journal of Remote Sensing,1999,20(12):2367-2393.
[11] Jiménez-Muñoz J C,Sobrino J A,Skoković D,et al.Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[J].IEEE Geoscience and Remote Sensing Letters,2014,11(10):1840-1843.
[12] 周颖,巩彩兰,匡定波,等.基于环境减灾卫星热红外波段数据研究核电厂温排水分布[J].红外与毫米波学报,2013,31(6):544-549.
[12] Zhou Y,Gong C L,Kuang D B,et al.Distribution of thermal discharge from a power plant: Analysis of thermal infrared data from the environmental mitigation satellite[J].Journal of Infrared and Millimeter Waves,2013,31(6):544-549.
[13] 宋挺,段峥,刘军志,等.Landsat8数据地表温度反演算法对比[J].遥感学报,2015,19(3):451-464.
[13] Song T,Duan Z,Liu J Z,et al.Comparison of four algorithms to retrieve land surface temperature using Landsat8 satellite[J].Journal of Remote Sensing,2015,19(3):451-464.
[14] 胡德勇,乔琨,王兴玲,等.单窗算法结合Landsat8热红外数据反演地表温度[J].遥感学报,2015,19(6):964-976.
[14] Hu D Y,Qiao K,Wang X L,et al.Land surface temperature retrieval from Landsat8 thermal infrared data using mono-window algorithm[J].Journal of Remote Sensing,2015,19(6):964-976.
[15] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J].地球物理学报,2015,58(3):741-747.
[15] Xu H Q.Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite[J].Chinese Journal of Geophysics,2015,58(3):741-747.
[16] Qin Z,Karnieli A,Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J].International Journal of Remote Sensing,2001,22(18):3719-3746.
[17] Qin Z H, Dall’Olmo G,Karnieli A, et al. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data[J].Journal of Geophysical Research,2001,106(D19):22655-22670.
[18] Becker F,Li Z L.Towards a local split window method over land surfaces[J].International Journal of Remote Sensing,1990,11(3):369-393.
[19] Wan Z M,Dozier J.A generalized split-window algorithm for retrieving land-surface temperature from space[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(4):892-905.
[20] Montanaro M,Gerace A,Lunsford A,et al.Stray light artifacts in imagery from the Landsat8 thermal infrared sensor[J].Remote Sensing,2014,6(11):10435-10456.
[21] McDonald J E.Saturation vapor pressures over supercooled water[J].Journal of Geophysical Research,1965,70(6):1553-1554.
[22] 朱利,赵利民,王桥,等.核电站温排水分布卫星遥感监测及验证[J].光谱学与光谱分析,2014,34(11):3079-3084.
[22] Zhu L,Zhao L M,Wang Q,et al.Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data:Modeling and validation[J].Spectroscopy and Spectral Analysis,2014,34(11):3079-3084.
[23] 覃志豪,Li W J,Zhang M H,等.单窗算法的大气参数估计方法[J].国土资源遥感,2003,15(2):37-43.doi:10.6046/gtzyyg.2003.02.10.
[23] Qin Z H,Li W J,Zhang M H,et al.Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from Landsat TM6[J].Remote Sensing for Land and Resources,2003,15(2):37-43.doi:10.6046/gtzyyg.2003.02.10.
[24] Niclòs R,Caselles V,Coll C,et al.Determination of sea surface temperature at large observation angles using an angular and emissivity-dependent split-window equation[J].Remote Sensing of Environment,2007,111(1):107-121.
[25] 杨景梅,邱金桓.用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J].大气科学,2002,26(1):9-22.
[25] Yang J M,Qiu J H.A method for estimating precipitable water and effective water vapor content from ground humidity parameters[J].Chinese Journal of Atmospheric Sciences,2002,26(1):9-22.
[26] 张志富,希爽.关于露点温度计算的探讨[J].干旱区研究,2011,28(2):275-281.
[26] Zhang Z F,Xi S.Study on calculation of dew-point temperature[J].Arid Zone Research,2011,28(2):275-281.
[27] Goff J A.Saturation pressure of water on the new Kelvin temperature scale[M]//American Society of Heating and Ventilation Ergineers.Transactions of the American Society of Heating and Ventilating Engineers.Canada:General Books LLC,1957:347-353.
[28] Jiménez-Muñoz J C,Cristóbal J,Sobrino J A,et al.Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):339-349.
[1] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[2] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[3] WANG Ping, MAO Kebiao, MENG Fei, YUAN Zijin. Spatiotemporal evolution of sea surface temperature in the East China Sea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 227-235.
[4] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[5] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[6] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[7] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[8] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
[9] Wenya LIU, Ruru DENG, Yeheng LIANG, Yi WU, Yongming LIU. Retrieval of chlorophyll-a concentration in Chaohu based on radiative transfer model[J]. Remote Sensing for Land & Resources, 2019, 31(2): 102-110.
[10] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[11] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[12] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[13] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[14] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[15] Haiyang PANG, Xiangsheng KONG, Lili WANG, Yonggang QIAN. A study of the extraction of snow cover using nonlinear ENDSI model[J]. Remote Sensing for Land & Resources, 2018, 30(1): 63-71.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech