Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (3) : 92-98     DOI: 10.6046/gtzyyg.2014.03.15
Technology Application |
Uranium ore prediction based on inversion of ETM+6-γ mineral information in Huashan granite area
GUAN Zhen1,2,3, WU Hong1,2,3, CAO Cui4, HUANG Xiaojuan5, GUO Lin1,2,3, LIU Yan1,2,3, HAO Min1,2,3
1. Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Guilin University of Technology, Guilin 541004, China;
2. Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration, Guilin University of Technology, Guilin 541004, China;
3. Institute of Remote Sensing Application, College of Earth Sciences, Guilin University of Technology, Guilin 541004, China;
4. Third Engineering Corporation, No. 11 Bureau Group of China Railway, Shiyan 442012, China;
5. Nanjiang Hydrogelogical and Engineering Grological Party, Bureau of Geology and Mineral Resources Exploration and Development of Chongqing, Chongqing 401121, China
Download: PDF(7042 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  As the main element in the uranium ore deposit,the nuclides of 235U decay to release the factor heat,causing the formation of thermal infrared remote sensing anomalies around the uranium deposit genetically related to granite intrusive body. The Huashan granitic pluton in eastern Guangxi has good geological conditions for generating uranium ore deposits. In the inaccessible environment of harsh terrain,it is difficult to carry out field survey work with traditional methods. Using Landsat7 ETM+ 6 thermal infrared band data,the authors extracted the remote sensing thermal anomalies of the rock through digital image processing techniques,and established the ETM+ 6-γ spectrum anomalous inversion model to delineate the γ-spectrum abnormal field distribution of the whole granitic pluton. On such a basis,the authors screened the γ-spectroscopy anomalies according to the ore-controlling fracture structures and related geological and mineral data. At last, a number of uranium ore prospecting areas were delineated in Huashan granitic pluton. The results obtained by the authors not only provide an important clue for the further field prospecting work but also demonstrate the enormous potential of the geothermal anomalies detected through the inversion of thermal infrared remote sensing in the prediction of granite-type uranium ore deposits.
Keywords land cover      remote sensing      CA-Markov model      simulation and forecast      Qinhuai River Basin     
:  TP79  
Issue Date: 01 July 2014
E-mail this article
E-mail Alert
Articles by authors
CHEN Ailing
DU Jinkang
Cite this article:   
CHEN Ailing,DU Jinkang. Uranium ore prediction based on inversion of ETM+6-γ mineral information in Huashan granite area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 92-98.
URL:     OR
[1] 张金带,李友良,简晓飞.我国铀资源勘查状况及发展前景[J].中国工程科学,2008,10(1):54-60. Zhang J D,Li Y L,Jian X F.Situation and development prospect of uranium resources exploration in China[J].China Engineering Science,2008,10(1):54-60.
[2] 黄国龙,朱捌,吴烈勤,等.华南花岗岩型铀矿勘查现状及找矿方向[J].铀矿地质,2006,22(6):345-349. Huang G L,Zhu J,Wu L Q,et al.Exploration situation and direction of granite type uranium deposits in South China[J].Uranium Geology,2006,22(6):345-349.
[3] 金小平.遥感技术应在矿产资源潜力评价中发挥突出作用[N].中国矿业报,2010-07-03(05). Jin X P.Remote sensing technology should play a prominent role in the mineral resource potential assessment[N].China Mining Report,2010-07-03(05).
[4] 王俊虎,张杰林,刘德长.热红外遥感技术在铀矿勘查中的应用潜力探讨[J].世界核地质科学,2011,28(1):32-41. Wang J H,Zhang J L,Liu D C.Discussion on the application potential of thermal infrared remote sensing technology in uranium deposit exploration[J].World Nuclear Geoscience,2011,28(1):32-41.
[5] 徐世光,郭远生.地热学基础[M].北京:科学出版社,2009:9-29. Xu S G,Guo Y S.Fundamental of geothermal[M].Beijing:Science Press,2009:9-29.
[6] 葛碧如,滕吉文,郑新江,等.诺阿卫星探察隐伏构造、地热及水分布[M].北京:气象出版社,1998:1-2. Ge B R,Teng J W,Zheng X J,et al.NOAA satellite explore hiddenstructure,Geothermal and water distribution[M].Beijing:China Meteorological Press,2009:9-29.
[7] 涂梨平.利用Landsat TM数据进行地表比辐射率和地表温度的反演[D].杭州:浙江大学资源与环境学院,2006:1-3. Tu L P.Using Landsat TM data to inverse surface emissivity and surface temperature[D].Hangzhou:College of Environmental and Resource Sciences of Zhejiang University,2006:1-23.
[8] 周彦儒.热红外遥感技术在地热资源调查中的应用与潜力[J].国土资源遥感,1998,10(4):24-28. Zhou Y R.The application of thermal infrared remote sensing techniques in geothermal surveying[J].Remote Sensing for Land and Resources,1998,10(4):24-28.
[9] Valor E,Caselles V.Mapping land surface emissivity from NDVI:Application to European,African,and South American areas[J].Remote Sensing of Environment,1996,57(3):167-184.
[10] 吴文渊.从热红外遥感获取断裂相关信息的分析方法研究[D].杭州:浙江大学,2011:26-27. Wu W Y.Analyzing method of thermal information associated with faults based on thermal infrared remote sensing[D].Hangzhou:Zhejiang University,2011:26-27.
[11] 覃志豪,李文娟,徐斌,等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感,2004,16(3):28-32,36,41. Qin Z H,Li W J,Xu B,et al.The estimation of land surface emissivity for Landsat TM6[J].Remote Sensing for Land and Resources,2004,16(3):28-32,36,41.
[12] Water L S,Salisbury J W.Spectral characterization of igneous rocks in the 8-to 12-μm region[J].Journal of Geophysical Research,1989,94(B7):9203-9213.
[13] 黄晓娟.基于RS与GIS的广西花山岩体铀矿找矿预测研究[D].桂林:桂林理工大学,2011. Huang X J.Study on prospecting uranium deposits in Huashan granite body,Guangxi based on GIS and RS[D].Guilin:Guilin University of Technology,2011.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[4] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[5] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[6] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[7] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[10] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[11] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[12] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[13] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[14] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[15] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech