Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 9-16     DOI: 10.6046/zrzyyg.2023394
|
Comparative study of popular remote sensing teaching and research software for land use classification in a complex mine scene
ZHANG Chengye1,2(), LI Mengyuan1, XING Jianghe1(), QIU Yuhang1
1. College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2. State Key Laboratory of Coal Fine Exploration and Intelligent Development, China University of Mining and Technology (Beijing), Beijing 100083, China
Download: PDF(4756 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The performance of remote sensing image processing software directly influences the effectiveness and efficiency of teaching and research activities conducted by related workers. Focusing on land use classification in a complex mine scene, this study comparatively investigated the performance of popular remote sensing software including Pixel Information Expert (PIE), Environment for Visualizing Images (ENVI), ERDAS IMAGINE (ERDAS), and eCognition Developer (eCognition), and the self-developed deep learning algorithm. The results show that ENVI yielded the highest overall accuracy (OA) and Kappa coefficient but the lowest classification efficiency in conventional pixel-oriented classification. In contrast, ERDAS exhibited the highest operational efficiency while maintaining relatively high accuracy. eCognition achieved the optimal OA and Kappa coefficient and relatively high operational efficiency in conventional object-oriented classification. The deep convolutional neural network algorithm demonstrated superior accuracy over the classification results of conventional methods. Overall, this study quantitatively revealed the performance of various software on different strategies and methods, providing a scientific basis for related workers to choose appropriate image processing software and improve teaching effect and research efficiency.

Keywords remote sensing software      complex mine      land use classification      teaching and research      neural network     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chengye ZHANG
Mengyuan LI
Jianghe XING
Yuhang QIU
Cite this article:   
Chengye ZHANG,Mengyuan LI,Jianghe XING, et al. Comparative study of popular remote sensing teaching and research software for land use classification in a complex mine scene[J]. Remote Sensing for Natural Resources, 2025, 37(3): 9-16.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023394     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/9
Fig.1  The location and remotely-sensed image of the study area
土地利用类型 训练集样本 测试集样本 总计
露天采场 331 116 447
排土场 218 108 326
复垦区 240 107 347
建筑 200 120 320
植被 344 175 519
裸地 201 102 303
总计 1 534 728 2 262
Tab.1  
Fig.2  Structure of ODCC
面向像元
分类方法
PIE-
Basic
PIE-
Engine AI
ENVI ERDAS eCognition
最小距离法 × ×
最大似然法 × ×
支持向量机法 × ×
Attention_UNet × × × ×
Tab.2  Comparative experiments on pixel-oriented classification
面向对象
分类方法
PIE-SIAS ENVI ERDAS eCognition Python+
PyCharm
最小距离法 × ×
最大似然法 × × ×
支持向量机法 × ×
ODCC × × × ×
Tab.3  Comparative experiments on object-oriented classification
处理方法 参数设置
最小距离法
最大似然法
支持向量机法 核函数: Radial Basis Function;惩罚系数: 20
深度卷积神经网络法 学习率: 0.000 1;迭代次数: 300;批次大小: 16;优化器:随机梯度下降
面向对象分类前处理 多尺度分割,分割尺度: 50;形状因子权重: 0.3;紧致度权重: 0.5
Tab.4  Parameter settings for different methods
分类方法 软件 OA/% Kappa 时间/s
最小距离法 PIE-Basic 63.09 0.551 12
ENVI 67.19 0.601 51
ERDAS 61.99 0.539 9
最大似然法 PIE-Basic 70.03 0.632 47
ENVI 69.24 0.622 64
ERDAS 67.08 0.596 15
支持向量机法 PIE-Basic 67.67 0.607 68
ENVI 73.34 0.673 162
ERDAS 71.14 0.647 36
Attention_UNet PIE-Engine AI 85.65 0.825
Tab.5  Comparison of accuracy and runtime for pixel-oriented classification
分类方法 软件 OA/% Kappa 分割时间/s 分类时间/s 总时间/s
最小距离法 PIE-SIAS 72.60 0.664 53 9 62
ENVI 73.66 0.679 96 22 118
eCognition 75.87 0.706 89 4 93
最大似然法 PIE-SIAS 74.29 0.686 53 38 91
eCognition 76.66 0.716 89 4 93
支持向量机法 PIE-SIAS 73.50 0.677 53 56 109
ENVI 75.39 0.700 96 211 307
eCognition 78.39 0.737 89 5 94
ODCC Python+Pycharm 93.95 0.940
Tab.6  Comparison of accuracy and runtime for object-oriented classification
Fig.3-1  Results of the four classification experiments
Fig.3-2  Results of the four classification experiments
[1] 刘东升, 廖通逵, 孙焕英, 等. 中国遥感软件研制进展与发展方向——以像素专家PIE为例[J]. 中国图象图形学报, 2021, 26(5):1169-1178.
[1] Liu D S, Liao T K, Sun H Y, et al. Research progress and development direction of Chinese remote sensing software:Taking PIE as an example[J]. Journal of Image and Graphics, 2021, 26(5):1169-1178.
[2] Chen C, Li W, Gao L R, et al. Special issue on advances in real-time image processing for remote sensing[J]. Journal of Real-Time Image Processing, 2018, 15(3):435-438.
[3] 闫琰, 董秀兰, 李燕. 基于ENVI的遥感图像监督分类方法比较研究[J]. 北京测绘, 2011, 25(3):14-16.
[3] Yan Y, Dong X L, Li Y. The comparative study of remote sensing image supervised classification methods based on ENVI[J]. Beijing Surveying and Mapping, 2011, 25(3):14-16.
[4] Mekonnen Y A, Manderso T M. Land use/land cover change impact on streamflow using Arc-SWAT model,in case of Fetamwatershed,AbbayBasin,Ethiopia[J]. Applied Water Science, 2023, 13(5):111.
[5] 郝容, 屈鸿钧, 文学虎. eCognition(易康)软件在地理国情普查地表覆盖解译中的应用[J]. 测绘通报, 2014(4):134-135.
[5] Hao R, Qu H J, Wen X H. The application of eCognition software in the interpretation of land cover in geographical national survey[J]. Bulletin of Surveying and Mapping, 2014(4):134-135.
[6] 张成业, 李军, 赵恒谦, 等. PIE系列遥感软件在测绘类专业体验式教学中的应用[J]. 北京测绘, 2023, 37(9):1320-1325.
[6] Zhang C Y, Li J, Zhao H Q, et al. The application of PIE remote sensing software in experiential teaching of surveying and mapping[J]. Beijing Surveying and Mapping, 2023, 37(9):1320-1325.
[7] 张成业, 李飞跃, 李军, 等. 基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类[J]. 煤田地质与勘探, 2022, 50(6):94-103.
[7] Zhang C Y, Li F Y, Li J, et al. Recognition of land use on open-pit coal mining area based on DeepLabv3+ and GF-2 high-resolution images[J]. Coal Geology and Exploration, 2022, 50(6):94-103.
[8] 张成业, 邢江河, 李军, 等. 基于U-Net网络和GF-6影像的尾矿库空间范围识别[J]. 自然资源遥感, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[8] Zhang C Y, Xing J H, Li J, et al. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4):252-257.doi:10.6046/zrzyyg.2021017.
[9] 桑潇, 张成业, 李军, 等. 煤炭开采背景下的伊金霍洛旗土地利用变化强度分析[J]. 自然资源遥感, 2021, 33(3):148-155.doi:10.6046/zrzyyg.2020358.
[9] Sang X, Zhang C Y, Li J, et al. Application of intensity analysis theory in the land use change in YijinHolo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3):148-155.doi:10.6046/zrzyyg.2020358.
[10] 陈蕊, 张继超. 基于eCognition的遥感图像面向对象分类方法研究[J]. 测绘与空间地理信息, 2020, 43(2):91-95.
[10] Chen R, Zhang J C. Study on object-oriented classification method of remote sensing image based on eCognition[J]. Geomatics and Spatial Information Technology, 2020, 43(2):91-95.
[11] 王海芹, 杨燕, 汪生燕. 国外四大遥感软件影像分类过程及效果比较[J]. 地理空间信息, 2009, 7(5):153-155.
[11] Wang H Q, Yang Y, Wang S Y. Comparisons of classification processes and results of 4 kinds of foreign remote sensing image[J]. Geospatial Information, 2009, 7(5):153-155.
[12] 陈理, 张仙, 李伟, 等. 基于分层次多尺度分割的缅甸达贡山镍矿矿区信息提取与动态变化监测[J]. 自然资源遥感, 2024, 36(4):55-61.doi:10.6046/zrzyyg.2023182.
[12] Chen L, Zhang X, Li W, et al. Hierarchical multi-scale segmentation-based information extraction and dynamic change monitoring in TagaungTaung nickel deposit,Myanmar[J]. Remote Sensing for Natural Resources, 2024, 36(4):55-61.doi:10.6046/zrzyyg.2023182.
[13] 邵亚琴, 王佳佳, 银玉霞. 基于ENVI软件对忻州窑矿土地类型识别及精度评价[J]. 内蒙古科技大学学报, 2022, 41(1):66-75.
[13] Shao Y Q, Wang J J, Yin Y X. Recognition of land features and accuracy evaluation of Xinzhouyao mine based on ENVI software[J]. Journal of Inner Mongolia University of Science and Technology, 2022, 41(1):66-75.
[14] 郄晨龙, 卞正富, 杨德军, 等. 鄂尔多斯煤田高强度井工煤矿开采对土壤物理性质的扰动[J]. 煤炭学报, 2015, 40(6):1448-1456.
[14] Qie C L, Bian Z F, Yang D J, et al. Effect of high-intensity underground coal mining disturbance on soil physical properties[J]. Journal of China Coal Society, 2015, 40(6):1448-1456.
[15] Zhang C, Xing J, Li J, et al. A new method for the extraction of tailing ponds from very high-resolution remotely sensed images:PSVED[J]. International Journal of Digital Earth, 2023, 16(1):2681-2703.
[16] Zhang X, Fu S, Hu Z, et al. Changes detection and object-oriented classification of major wetland cover types in response to driving forces in ZoigeCounty,Eastern Qinghai-Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:9297-9305.
[17] Shpak A V. Comparative analysis of supervised methods for the classification of mountain forests based on space imagery from the satellite RapidEye[J]. Astronomical School’s Report, 2012, 8(2):212-215.
[18] Mustafa A, Szydłowski M. The impact of spatiotemporal changes in land development (1984—2019) on the increase in the runoff coefficient in erbil,Kurdistan region of Iraq[J]. Remote Sensing,2020, 12(8):1302.
[19] Xi Y, Ren C, Tian Q, et al. Exploitation of time series Sentinel-2 data and different machine learning algorithms for detailed tree species classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:7589-7603.
[20] Madhuanand L, Sadavarte P, Visschedijk A J H, et al. Deep convolutional neural networks for surface coal mines determination from Sentinel-2 images[J]. European Journal of Remote Sensing, 2021, 54(1):296-309.
doi: 10.1080/22797254.2021.1920341
[21] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected con-volutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:2261-2269.
[22] Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks. 2017 IEEE International Conference on Computer Vision (ICCV).Venice,Italy.IEEE, 2017:764-773.
[23] Woo S, Park J, Lee J Y, et al. CBAM:Convolutional block attention module[C]// European Conference on Computer Vision.Springer. 2018:3-19.
[24] Yang L, Chen W, Bi P S, et al. Improving vegetation segmentation with shadow effects based on double input networks using polarization images[J]. Computers and Electronics in Agriculture, 2022,199:107123.
[1] MA Fei, SUN Lupeng, YANG Feixia, XU Guangxian. Pansharpening based on the multiscale weighted neural network in the transform domain[J]. Remote Sensing for Natural Resources, 2025, 37(3): 76-84.
[2] ZHENG Zongsheng, GAO Meng, ZHOU Wenhuan, WANG Zhenghan, HUO Zhijun, ZHANG Yuewei. Densely connected multiscale semantic segmentation for land cover based on the iterative optimization strategy for samples[J]. Remote Sensing for Natural Resources, 2025, 37(2): 11-18.
[3] QU Haicheng, WANG Ying, LIU Lamei, HAO Ming. Information extraction of roads from remote sensing images using CNN combined with Transformer[J]. Remote Sensing for Natural Resources, 2025, 37(1): 38-45.
[4] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
[5] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[6] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[7] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[8] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[9] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[10] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[11] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[12] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[13] LIAO Kuo, NIE Lei, YANG Zeyu, ZHANG Hongyan, WANG Yanjie, PENG Jida, DANG Haofei, LENG Wei. Classification of tea garden based on multi-source high-resolution satellite images using multi-dimensional convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(2): 152-161.
[14] YANG Zhaoying, HAN Lingyi, ZHENG Xiangxiang, LI Wenji, FENG Lei, WANG Yi, YANG Yongpeng. Landslide identification using remote sensing images and DEM based on convolutional neural network: A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2): 224-230.
[15] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech