Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 90-95     DOI: 10.6046/zrzyyg.2022315
|
Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5
CHEN Di1(), PENG Qiuzhi1,2,3(), HUANG Peiyi1, LIU Yaxuan1
1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Surveying and Mapping Geo-informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, China
3. Yunnan Natural Resources and Planning Intelligence Innovation Laboratory, Kunming 650093, China
Download: PDF(2391 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In response to the detection and positioning demands for land for photovoltaic development due to the rapid growth of the photovoltaic industry, this study proposed a YOLOv5-pv algorithm for the detection of land for photovoltaic development based on the improved YOLOv5. For quick and accurate detection and positioning of land for photovoltaic development in complex scenes, the YOLOv5-pv algorithm adopted a weighted bi-directional feature pyramid based on YOLOv5 to achieve simple and fast multi-scale feature fusion, thereby enhancing the ability to detect small targets. Subsequently, the Ghost convolution was employed to retain valuable feature map information in redundant information. Finally, a co-attention mechanism was integrated to improve the algorithm's attention on the land for photovoltaic development, increasing its capacity to resist background interference. The experimental results demonstrate that YOLOv5-pv outperformed YOLOv5, with the recall rate and average accuracy improved by 6.68 percentage points and 4.43 percentage points, respectively. Therefore, the method proposed in this study can effectively detect the land for photovoltaic development, holding referential significance for relevant detection research.

Keywords deep learning      YOLOv5      land for photovoltaic development      remote sensing imaging detection      attention mechanism     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Di CHEN
Qiuzhi PENG
Peiyi HUANG
Yaxuan LIU
Cite this article:   
Di CHEN,Qiuzhi PENG,Peiyi HUANG, et al. Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5[J]. Remote Sensing for Natural Resources, 2023, 35(4): 90-95.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022315     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/90
Fig.1  Bi-directional feature pyramid network
Fig.2  Traditional convolution and Ghost convolution
Fig.3  YOLOv5-pv algorithm
算法 加权双向
特征金字塔
Ghost
卷积
协同注意
力机制
mAP/%
YOLOv5 × × × 80.25
算法1 × × 81.73
算法2 × 82.62
YOLOv5-pv 84.68
Tab.1  Mean average precision of improved algorithm
影像 光伏位置 YOLOv5结果 YOLOv5-pv结果
影像1
影像2
影像3
影像4
Tab.2  Test results of two algorithms
算法 正确检测数量 误判数量 漏判数量
YOLOv5-pv 170 8 18
YOLOv5 150 10 38
Tab.3  Comparison of test results
[1] Hernandez R R, Hoffacker M K, Field C B. Land-use efficiency of big solar[J]. Environmental Science & Technology, 2014, 48(2):1315-1323.
doi: 10.1021/es4043726 url: https://pubs.acs.org/doi/10.1021/es4043726
[2] 韩梦瑶, 熊焦, 刘卫东. 中国光伏发电的时空分布、竞争格局及减排效益[J]. 自然资源学报, 2022, 37(5):1338-1351.
doi: 10.31497/zrzyxb.20220516
[2] Han M Y, Xiong J, Liu W D, Spatio-temporal distribution,competitive development and emission reduction of China’s photovoltaic power generation[J]. Journal of Natural Resources, 2022, 37 (5):1338-1351.
doi: 10.31497/zrzyxb.20220516 url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20220516
[3] 王胜利, 张连蓬, 朱寿红, 等. 多共性特征联合的Landsat8 OLI遥感影像光伏电站提取[J]. 测绘通报, 2018,(11):46-52.
doi: 10.13474/j.cnki.11-2246.2018.0348
[3] Wang S L, Zhang L P, Zhu S H, et al. et al Multi-invariant feature combined photovoltaic power plants extraction using multi-temporal Landsat8 OLI imagery[J]. Surveying and Mapping Bulletin, 2018,(11):46-52.
[4] Zhang X, Zeraatpisheh M, Rahman M M, et al. Texture is important in improving the accuracy of mapping photovoltaic power plants:A case study of Ningxia autonomous region,China[J]. Remote Sensing, 2021, 13(19):3909.
doi: 10.3390/rs13193909 url: https://www.mdpi.com/2072-4292/13/19/3909
[5] 宋业冲, 李英成, 耿中元, 等. 深度学习方法在光伏用地遥感检测中的应用[J]. 测绘科学, 2020, 45(11):84-92.
[5] Song Y C, Li Y C, Geng Z Y, et al. Application of deep learning method in remote sensing detection of photovoltaic land[J]. Science of Surveying and Mapping, 2020, 45 (11):84-92.
[6] Costa M V C V D, Carcalho O L F, Orlandl A G, et al. Remote sensing for monitoring photovoltaic solar plants in Brazil using deep semantic segmentation[J]. Energies, 2021, 14(10):2960.
doi: 10.3390/en14102960 url: https://www.mdpi.com/1996-1073/14/10/2960
[7] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[8] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. arXiv, 2018. https://arxiv.org/abs/1804.02767.
url: https://arxiv.org/abs/1804.02767
[9] Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[10] 龙怡灿, 雷蓉, 董杨, 等. 基于YOLOv5算法的飞机类型光学遥感识别[J]. 地球信息科学学报, 2022, 24(3):572-582.
doi: 10.12082/dqxxkx.2022.210369
[10] Long Y C, Lei R, Dong Y, et al. YOLOv5 based on aircraft type detection from remotely sensed optical images[J]. Journal of Geo-Information Science, 2022, 24 (3):572-582.
[11] 林森, 刘美怡, 陶志勇. 采用注意力机制与改进YOLOv5的水下珍品检测[J]. 农业工程学报, 2021, 37(18):307-314.
[11] Lin S, Liu M Y, Tao Z Y. Detection of underwater treasures using attention mechanism and improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (18):307-314.
[12] 胡根生, 吴继甜, 鲍文霞, 等. 基于改进YOLOv5网络的复杂背景图像中茶尺蠖检测[J]. 农业工程学报, 2021, 37(21):191-198.
[12] Hu G S, Wu J T, Bao W X, et al. Detection of Ectropis oblique in complex background images using improved YOLOv5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (21):191-198.
[13] Tan M, Pang R, Le Q V. EfficientDet:Scalable and efficient object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2020:10778-10787.
[14] Han K Wang Y H, Tian Q, et al. GhostNet:More features from cheap operations[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,USA, 2020:1577-1586.
[15] Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE, 2021:13713-13722.
[16] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multibox detector[C]// European Conference on Computer Vision.Cham:Springer, 2016:21-37.
[17] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2014:580-587.
[18] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 url: http://ieeexplore.ieee.org/document/7485869/
[19] 陈静, 陈静波, 孟瑜, 等. 尺度和密度约束下基于 YOLOv3 的风电塔架遥感检测方法[J]. 自然资源遥感, 2021, 33(3):54-62.doi:10.6046/zrzyyg.2020309.
[19] Chen J, Chen J B, Meng Y, et al. Detection of wind turbine towers in remote sensing based on YOLOv3 model under scale and density constraints[J]. Remote Sensing for Natural Resources, 2021, 33(3):54-62.doi:10.6046/zrzyyg.2020309.
[1] LI Xintong, SHI Lan, CHEN Duoyan. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area[J]. Remote Sensing for Natural Resources, 2023, 35(4): 105-113.
[2] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[3] LIU Hanwei, CHEN Fulong, LIAO Yaao. Remote sensing dynamic monitoring and driving factor analysis for the Beijing section of Ming Great Wall[J]. Remote Sensing for Natural Resources, 2023, 35(4): 255-263.
[4] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[5] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[8] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[9] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[10] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[11] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[12] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[13] JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
[14] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[15] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech