Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 21-30     DOI: 10.6046/zrzyyg.2024116
|
Hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization with feature space augmentation
QIN Ziyi(), YANG Longshan()
Mining College of Guizhou University, Guiyang 550025, China
Download: PDF(5509 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Nonnegative matrix factorization (NMF) is commonly used in hyperspectral image (HSI) unmixing due to its high interpretability and computability. To effectively address HSI noise and improve unmixing efficiency, this study proposed a method for hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization (SSTVNMF) with feature space augmentation. First, the original data space was converted to the feature space through feature extraction, allowing the unmixing process to be performed in the feature space for enhanced unmixing efficiency. Second, to reduce the impact of noise, the spatial information was extracted using the bilateral filtering (BF) method for enhanced feature extraction, thereby ensuring the accuracy of extracted features. Third, to ensure the effectiveness of the unmixing method, total variation (TV) regularization that considers both spatial and spectral features was established based on the NMF method. The spatial TV promotes abundance smoothing by calculating the horizontal and vertical differences in abundance between neighboring pixels. Based on the minimum-volume TV, the spectral TV enhances endmember extraction by applying constraint forces between endmembers to minimize the volume. Finally, the proposed method was verified using the synthetic data from the USGS spectral library as simulated data and the Jasper Ridge, APEX, and Cuprite datasets as actual data. The experimental results demonstrate that the proposed method outperformed other improved NMF-based methods in terms of qualitative and quantitative assessments.

Keywords hyperspectral unmixing      bilateral filtering      total variation      spectral-spatial information      feature extraction     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ziyi QIN
Longshan YANG
Cite this article:   
Ziyi QIN,Longshan YANG. Hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization with feature space augmentation[J]. Remote Sensing for Natural Resources, 2025, 37(4): 21-30.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024116     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/21
Fig.1  Flow chart of SSTVNMF with feature space
Fig.2  Effect of SSTVNMF in feature space parameters on the unmixing performance
Fig.3  Effect of SNR on the unmixing performance
Fig.4-1  Effect of endmember numbers on the unmixing performance
Fig.4-2  Effect of endmember numbers on the unmixing performance
Fig.5  Endmember extraction of SSTVNMF in feature space and other comparison methods on the Jasper Ridge dataset
Tab.1  Abundance estimation of SSTVNMF in feature space and other comparison methods on the Jasper Ridge dataset
算法 Jasper Ridge数据集 APEX数据集 Cuprite数据集
SAD SRE 运行时间/s SAD SRE 运行时间/s SAD SRE 运行时间/s
本文方法 0.141 6 10.590 9 0.51 0.138 0 11.762 0 4.23 0.398 4 9.284 1 0.76
SSTVNMF 0.141 9 10.505 2 0.32 0.138 1 11.761 9 3.78 0.391 7 9.177 2 0.50
NMFQMV 0.147 9 8.976 2 1.20 0.138 3 11.963 5 1.08 0.400 0 8.272 6 1.31
SeCoDe 0.215 8 8.420 6 22.78 0.163 5 3.079 8 6.20 0.280 5 7.026 8 13.50
gtvMBO 0.217 9 8.073 6 0.01 0.141 1 -0.274 9 0.01 0.263 7 4.308 5 0.01
PISINMF 0.119 8 9.916 9 2.70 0.147 9 7.380 3 1.53 0.434 3 10.044 9 3.70
EBEAE-TV 0.237 7 11.701 6 2.13 0.129 8 -1.452 3 1.17 0.288 2 4.799 4 3.37
SGSNMF 0.257 7 7.170 6 3.93 0.146 0 3.185 9 0.71 0.274 8 5.097 6 6.56
KbSNMF 0.137 8 9.243 5 6.83 0.139 8 11.132 1 3.05 0.409 2 8.793 3 14.74
Tab.2  Evaluation metrics and running time of SSTVNMF in feature space and other comparison methods on true dataset
算法 约束项 评价指标
空间TV 光谱TV BF SAD SRE
NMFQMV × × 0.147 9 8.976 2
SSTVNMF × 0.141 9 10.505 2
本文方法 0.141 6 10.590 9
  
[1] 苏远超, 许若晴, 高连如, 等. 基于深度学习的高光谱遥感图像混合像元分解研究综述[J]. 遥感学报, 2024, 28(1):1-19.
[1] Su Y C, Xu R Q, Gao L R, et al. Development of deep learning-based hyperspectral remote sensing image unmixing[J]. National Remote Sensing Bulletin, 2024, 28(1):1-19.
[2] 孙肖, 徐林林, 王晓阳, 等. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3):43-49.doi:10.6046/zrzyyg.2021215.
[2] Sun X, Xu L L, Wang X Y, et al. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3):43-49.doi:10.6046/zrzyyg.2021215.
[3] 袁静, 章毓晋, 高方平. 线性高光谱解混模型综述[J]. 红外与毫米波学报, 2018, 37(5):553-571.
[3] Yuan J, Zhang Y J, Gao F P. An overview on linear hyperspectral unmixing[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5):553-571.
[4] 李殷娜, 李正强, 郑杨, 等. 基于非负矩阵分解的中红外地表特性光谱重建方法[J]. 光谱学与光谱分析, 2024, 44(2):563-570.
[4] Li Y N, Li Z Q, Zheng Y, et al. Spectral reconstruction method of mid-infrared surface characteristics based on non-negative matrix factorization[J]. Spectroscopy and Spectral Analysis, 2024, 44(2):563-570.
[5] Zhao X L, Wang F, Huang T Z, et al. Deblurring and sparse unmixing for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4045-4058.
[6] 王建宇, 李春来. 高光谱遥感成像技术的发展与展望[J]. 空间科学学报, 2021, 41(1):22-33.
[6] Wang J Y, Li C L. Development and prospect of hyperspectral imager and its application[J]. Chinese Journal of Space Science, 2021, 41(1):22-33.
[7] Chen B H, Cheng H Y, Tseng Y S, et al. Two-pass bilateral smooth filtering for remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:8006405.
[8] Guo J, Xie R, Jin G. An efficient method for NMR data compression based on fast singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2):301-305.
[9] Zheng Y B, Huang T Z, Zhao X L, et al. Mixed noise removal in hyperspectral image via low-fibered-rank regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):734-749.
[10] Zhuang L, Lin C H, Figueiredo M A T, et al. Regularization para-meter selection in minimum volume hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12):9858-9877.
[11] Yao J, Hong D, Xu L, et al. Sparsity-enhanced convolutional decomposition:A novel tensor-based paradigm for blind hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5505014.
[12] Qin J, Lee H, Chi J T, et al. Blind hyperspectral unmixing based on graph total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):3338-3351.
[13] Cruz-Guerrero I A, Campos-Delgado D U, Mejía-Rodríguez A R. Extended blind end-member and abundance estimation with spatial total variation for hyperspectral imaging[C]// 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Mexico.IEEE, 2021: 1957-1960.
[14] Shao Y, Lan J, Zhang Y, et al. Spectral unmixing of hyperspectral remote sensing imagery via preserving the intrinsic structure inva-riant[J]. Sensors, 2018, 18(10):3528.
[15] Wang X, Zhong Y, Zhang L, et al. Spatial group sparsity regularized nonnegative matrix factorization for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6287-6304.
[16] Ekanayake E M M B, Weerasooriya H M H K, Ranasinghe D Y L, et al. Constrained nonnegative matrix factorization for blind hyperspectral unmixing incorporating endmember independence[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1853, 14:11853-11869.
[17] Feng X R, Li H C, Li J, et al. Hyperspectral unmixing using sparsity-constrained deep nonnegative matrix factorization with total variation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):6245-6257.
[18] Qu K, Li Z, Wang C, et al. Hyperspectral unmixing using higher-order graph regularized NMF with adaptive feature selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5511815.
[19] Schaepman M E, Jehle M, Hueni A, et al. Advanced radiometry measurements and earth science applications with the airborne prism experiment (APEX)[J]. Remote Sensing of Environment, 2015, 158:207-219.
[20] Yao J, Meng D, Zhao Q, et al. Nonconvex-sparsity and nonlocal-smoothness based blind hyperspectral unmixing[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2019:2991-3006.
[21] Ghosh P, Roy S K, Koirala B, et al. Hyperspectral unmixing using transformer network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5535116.
[1] ZHANG Yiran, PAN Bin, XU Xia, ZHU Junfeng. Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning[J]. Remote Sensing for Natural Resources, 2025, 37(2): 88-95.
[2] GAO Sheng, CHEN Fulong, SHI Pilong, ZHOU Wei, ZHU Meng, LUO Yansong, YANG Qingxia, WANG Qin. Fine-scale remote sensing monitoring and interpretation of large-scene vegetation health in the Jiuzhai Valley biosphere reserve: A case study of the Changhai pilot zone[J]. Remote Sensing for Natural Resources, 2024, 36(2): 188-197.
[3] LI Lei, SUN Xiyan, JI Yuanfa, FU Wentao. Hyperspectral image classification based on superpixel segmentation and extended multi-attribute profiles[J]. Remote Sensing for Natural Resources, 2023, 35(4): 114-121.
[4] JIANG Sili, HUANG Wei, HUANG Rui. Thick cloud removal of remote sensing images based on multi-reference image information fusion[J]. Remote Sensing for Natural Resources, 2022, 34(2): 121-127.
[5] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[6] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[7] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[8] Xinghang ZHANG, Lin ZHU, Wei WANG, Lishan MENG, Xiaojuan LI, Yingchao REN. Study and application of sequential extraction method of ground fissures based on object[J]. Remote Sensing for Land & Resources, 2019, 31(1): 87-94.
[9] WEI Yingjuan, ZHENG Xiongwei, LEI Bing, GAN Yuhang. Realization of clouds automatic extraction of GF-1 remote sensing image based on sample model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 39-45.
[10] ZHANG Yongmei, YANG Fei, XU Jing. An improved length variable angle chain code algorithm and its application to dock identification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 164-169.
[11] LI Fuyu, YE Famao. Summarization of SIFT-based remote sensing image registration techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 14-20.
[12] LIU Pengcheng. Feature extraction of coastline contour based on level set theory[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 75-79.
[13] CHANG Ruichun, WANG Lu, WANG Maozhi. Application of FastICA in mineral information extraction from hyperspectral remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 129-132.
[14] LI Ting, ZHAN Qing-ming, YU Liang. A Classification Method for Mobile Laser Scanning Data Based on Object Feature Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 17-21.
[15] CUI Lin-lin, LUO Yi, BAO An-ming. Land Cover Classification with SVM Based on NWFE and Texture Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech