Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 163-170     DOI: 10.6046/gtzyyg.2018.04.24
|
Extraction of dry drainage system based on independent component analysis and morphological characteristics
Junlin CHEN, Runmin PENG(), Yan YAN, Weiguang ZHAO
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(8519 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The extraction of drainage system is necessary in many geoscience research fields. For instance, drainage system is an important indicator for structure and lithologic interpretation, sample sites in stream sediment geochemical exploration are designed according to drainage system, and drainage system needs to be recognized and masked in mineral alteration extraction. The drainage system in remote sensing image is generally extracted according to spectral features of water body. However, in the dry drainage systems, such as gullies and seasonal rivers in dry season and under prolonged dry condition, the method based on water body is not applicable. To tackle this problem, the authors propose a method based on independent component analysis (ICA). ICA is a signal decomposition technique that converts multispectral data to independent components which represent independent signal sources, thereby enhancing and separating the specific target in the image. The streambed system extracted by ICA may be still accompanied by noisy data. A series of methods are used to enhance image and remove noise, which include background suppression, morphological filtering and de-noising based on morphological features. The proposed method was tested with ASTER data from Huogeqi area of Urad Rear Banner in Inner Mongolia Autonomous Region, and the result was compared with that derived from supervised classification. The results indicate that the method proposed in this paper can be used to identify dry drainage system, and the recognition result is better than the traditional supervised classification method. The method put forward by the authors performs better in interference information reduction and de-noising, and training data are not needed in this method. In conclusion, the method proposed in this paper is ideal and practical in the extraction of dry drainage system.

Keywords ICA      morphological features      streambed extraction      dry drainage system      background suppression     
:  TP79  
Corresponding Authors: Runmin PENG     E-mail: cprm@cugb.edu.cn
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junlin CHEN
Runmin PENG
Yan YAN
Weiguang ZHAO
Cite this article:   
Junlin CHEN,Runmin PENG,Yan YAN, et al. Extraction of dry drainage system based on independent component analysis and morphological characteristics[J]. Remote Sensing for Land & Resources, 2018, 30(4): 163-170.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.24     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/163
Fig.1  Image of the study area
Fig.2  Flow chart of the proposed method
Fig.3  Independent components obtained using ICA and principle components obtained using PCA
Fig.4  Drainage system component and de-noising results with different methods
Fig.5  Comparison of drainage system extraction results by SVM supervised classification method and the method proposed in this paper
[1] 王晓东 . 水系提取方法研究及其地质意义[D]. 吉林:吉林大学, 2015.
[1] Wang X D . The Research of Drainage Extraction Method and Its Geological Significance[D]. Jilin:Jilin University, 2015.
[2] 都金康, 黄永胜, 冯学智 , 等. SPOT卫星影像的水体提取方法及分类研究[J]. 遥感学报, 2001,5(3):214-219.
doi: 10.3321/j.issn:1007-4619.2001.03.009 url: http://d.wanfangdata.com.cn/Periodical_ygxb200103009.aspx
[2] Du J K, Huang Y S, Feng X Z , et al. Study on water bodies extraction and classification from SPOT image[J]. Journal of Remote Sensing, 2001,5(3):214-219.
[3] 杜云艳, 周成虎 . 水体的遥感信息自动提取方法[J]. 遥感学报, 1998,2(4):264-269.
doi: 10.11834/jrs.19980406 url: http://www.cqvip.com/qk/92457A/199804/3300536.html
[3] Du Y Y, Zhou C H . Automatically extracting remote sensing information for water bodies[J]. Journal of Remote Sensing, 1998,2(4):264-269.
[4] 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012 url: http://www.cqvip.com/Main/Detail.aspx?id=20226277
[4] Xu H Q . A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.
[5] 闫霈, 张友静, 张元 . 利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J]. 遥感信息, 2007,( 6):62-67.
[5] Yan P, Zhang Y J, Zhang Y . A study on information extraction of water system in semi-arid regions with the enhanced water index(EWI) and GIS based noise remove techniques[J]. Remote Sensing Information, 2007,( 6):62-67.
[6] Yousefi P, Jalab H A, Ibrahim R W , et al. River segmentation using satellite image contextual information and Bayesian classifier[J]. The Imaging Science Journal, 2016,64(8):453-459.
doi: 10.1080/13682199.2016.1236067 url: https://www.tandfonline.com/doi/full/10.1080/13682199.2016.1236067
[7] Han B, Wu Y Q . A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation[J]. Pattern Recognition, 2017,67:396-409.
doi: 10.1016/j.patcog.2017.02.022 url: https://linkinghub.elsevier.com/retrieve/pii/S0031320317300869
[8] Bouaziz M, Wijaya A, Gloaguen R . Remote gully erosion mapping using ASTER data and geomorphologic analysis in the Main Ethiopian Rift[J]. Geo-spatial Information Science, 2011,14(4):246-254.
doi: 10.1007/s11806-011-0565-1 url: http://www.tandfonline.com/doi/abs/10.1007/s11806-011-0565-1
[9] Taruvinga K . Gully Mapping Using Remote Sensing:Case Study in KwaZulu-Natal, South Africa[D]. Waterloo:University of Waterloo, 2009.
[10] Castillo C, Taguas E V, Zarco-Tejada P , et al. The normalized topographic method:An automated procedure for gully mapping using GIS[J]. Earth Surface Processes and Landforms, 2015,39(15):2002-2015.
doi: 10.1002/esp.3595 url: http://onlinelibrary.wiley.com/doi/10.1002/esp.3595/pdf
[11] Wang R H, Zhang S W, Pu L M , et al. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the Sancha River catchment,Northeast China[J]. ISPRS International Journal of Geo-Information, 2016,5(11):200.
doi: 10.3390/ijgi5110200 url: http://www.mdpi.com/2220-9964/5/11/200
[12] Höfle B, Griesbaum L, Forbriger M . GIS-based detection of gullies in terrestrial LiDAR data of the Cerro Llamoca peatland (Peru)[J]. Remote Sensing, 2013,5(11):5851-5870.
doi: 10.3390/rs5115851 url: http://www.mdpi.com/2072-4292/5/11/5851
[13] Karami A, Khoorani A, Nuhegar A , et al. Gully erosion mapping using object-based and pixel-based image classification methods[J]. Environmental and Engineering Geoscience, 2015,21(2):101-110.
doi: 10.2113/gseegeosci.21.2.101 url: https://pubs.geoscienceworld.org/eeg/article/21/2/101-110/60545
[14] Tiwari K C, Arora M K, Singh D . An assessment of independent component analysis for detection of military targets from hyperspectral images[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(5):730-740.
doi: 10.1016/j.jag.2011.03.007 url: https://linkinghub.elsevier.com/retrieve/pii/S030324341100050X
[15] Zhang J P, Zhu F Y. Target detection approach for hyperspectral imagery based on independent component analysis and local singularity [C]//International Conference on Natural Computation.Tianjin:IEEE, 2009: 603-607.
[16] 金硕, 王斌, 夏威 . 基于带参考信号独立分量分析的高光谱图像目标探测[J]. 红外与毫米波学报, 2015,34(2):177-183.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ150515000017C9FbHe
[16] Jin S, Wang B, Xia W . Target detection in hyperspectral imagery based on independent component analysis with references[J]. Journal of Infrared and Millimeter Waves, 2015,34(2):177-183.
[17] 郑茂, 粘永健, 郑林华 . 基于独立分量分析的高光谱图像目标检测算法[J]. 信号处理, 2009,25(12):1912-1916.
doi: 10.3969/j.issn.1003-0530.2009.12.016 url: http://www.cqvip.com/Main/Detail.aspx?id=32313526
[17] Zheng M, Nian Y J, Zheng L H . Target detection algorithm in hyperspectral imagery based on ICA[J]. Signal Processing, 2009,25(12):1912-1916.
[18] 戴青云, 余英林 . 数学形态学在图象处理中的应用进展[J]. 控制理论与应用, 2001,18(4):478-482.
doi: 10.3969/j.issn.1000-8152.2001.04.002 url: http://www.cqvip.com/qk/90555X/200104/5428133.html
[18] Dai Q Y, Yu Y L . The advances of mathematical morphology in image processing[J]. Control Theory and Applications, 2001,18(4):478-482.
[19] Sivanpillai R, Miller S N . Improvements in mapping water bodies using ASTER data[J]. Ecological Informatics, 2010,5(1):73-78.
doi: 10.1016/j.ecoinf.2009.09.013 url: http://linkinghub.elsevier.com/retrieve/pii/S1574954109000855
[20] 张茜凤, 上官冬辉, 刘时银 , 等. ASTER数据在寒区流域水系参数化中的应用——以木扎尔特流域为例[J]. 中国矿业大学学报, 2005,34(5):655-659.
doi: 10.3321/j.issn:1000-1964.2005.05.024 url: http://d.wanfangdata.com.cn/Periodical/zgkydxxb200505024
[20] Zhang Q F, Shangguan D H, Liu S Y , et al. Application of ASTER data in parameterizing water system in cold region:Case study for Muzaerte valley[J]. Journal of China University of Mining and Technology, 2005,34(5):655-659.
[21] Hyvärinen A, Oja E . Independent component analysis:Algorithms and applications[J]. Neural Networks, 2000,13(4-5):411-430.
doi: 10.1016/S0893-6080(00)00026-5 url: http://linkinghub.elsevier.com/retrieve/pii/S0893608000000265
[22] Liu C J, Wechsler H. Comparative assessment of independent component analysis (ICA) for face recognition [C]//International Conference on Audio and Video Based Biometric Person Authentication.Washington D.C., 1999: 22-24.
[23] Zhang K, Chan L W. ICA by PCA approach:Relating higher-order statistics to second-order moments [C]// International Conference on Independent Component Analysis and Signal Separation. Berlin:Springer, 2006: 311-318.
[24] 谢亮 . 基于独立分量分析特征提取方法的研究及其应用[D]. 金华:浙江师范大学, 2009.
[24] Xie L . Reserch of Feature Extraction Based on Independent Component Analysis and Its Application[D]. Jinhua:Zhejiang Normal University, 2009.
[25] 杨竹青, 李勇, 胡德文 . 独立成分分析方法综述[J]. 自动化学报, 2002,28(5):762-772.
[25] Yang Z Q, Li Y, Hu D W . Independent component analysis:A survey[J]. Acta Automatica Sinica, 2002,28(5):762-772.
[26] 金阿立, 王永仲 . 基于局部自适应中值滤波的红外背景抑制方法[J]. 红外技术, 2007,29(8):452-454.
[26] Jin A L, Wang Y Z . Algorithm of suppressing infrared background baseing on local self-adaptive median filter[J]. Infrared Technology, 2007,29(8):452-454.
[27] 李辉, 代侦勇, 张利华 , 等. 利用数学形态学的遥感影像水系提取方法[J]. 武汉大学学报(信息科学版), 2011,36(8):956-959.
url: http://www.cqvip.com/QK/92848A/201108/38885515.html
[27] Li H, Dai Z Y, Zhang L H , et al. Mathematical morphology based drainage line extraction from remote sensing image[J]. Geomatics and Information Science of Wuhan University, 2011,36(8):956-959.
[28] Vapnik V N . The Nature of Statistical Learning Theory[M]. Springer Science and Business Media, 2013.
[29] 李琳, 张晓龙 . 基于RBF核的SVM学习算法的优化计算[J]. 计算机工程与应用, 2006,( 29):190-192,204.
[29] Li L, Zhang X L . Optimization of SVM with RBF kernel[J].Computer Engineering and Applications, 2006(29):190-192,204.
[1] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[2] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[3] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[4] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[5] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[8] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[9] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[10] DU Yi, WANG Dayang, WANG Dagang. Spatial downscaling of GPM precipitation products: A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 111-120.
[11] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[12] CHEN Fuqiang, LIU Yalin, GAO Xu, SONG Minghui, ZHANG Zhanzhong. Application of remote sensing technology to the engineering geological survey for the construction of the China-Nepal railway[J]. Remote Sensing for Natural Resources, 2021, 33(4): 219-226.
[13] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[14] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[15] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech