Please wait a minute...
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 10-17     DOI: 10.6046/zrzyyg.2021094
Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data
DING Bo1,3(), LI Wei2(), HU Ke1
1. School of Ocean Sciences, China University of Geosciences (Beijing), Beijng 100083, China
2. Yantai Geological Survey Center of Coastal Zone, China Geological Survey, Yantai 264011, China
3. NewMark Technology (Beijing) Co., Ltd., Beijing 100085, China
Download: PDF(4082 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Total suspended matter concentration (TSMC) is one of the important factors influencing water bodies in coastal gulfs and lagoons. The rapid and accurate TSMC inversion can be obtained using remote sensing data. However, it is scarce to conduct TSMC inversion using two different data sources at the same time. This study conducted the inversion of TSMC in Maowei Sea and its estuary based on two data sources. Specifically, this study carried out image segmentation and object extraction using the dual-band ratio algorithm and the Cloude-Pottier target decomposition algorithm, respectively based on GF-1C optical images and GF-3 SAR data of September 2019. Meanwhile, contemporaneous field sample data were utilized. Then, the TSMC inversion was performed using the cubic polynomial regression algorithm. As revealed by the accuracy analysis, the fitting degree (R2), root mean square error, and mean relative percentage error of the GF-1C-based inversion model were 0.88, 130.25 mg/L, and 9.65%, respectively, while those of the GF-3-based inversion model were 0.61, 230.87 mg/L, and 15.13%, respectively. These indicate that the GF-1C-based TSMC inversion had a higher inversion accuracy (90.35%) than the GF-3-based TSMC inversion (84.87%). However, the inversion results of the two models showed highly similar distribution patterns. This further indicates that the inversion models established using two different data sources in this study can serve as references for TSMC inversion of Maowei Sea and its estuary and for the environmental monitoring in coastal zones.

Keywords total suspended matter concentration (TSMC)      SAR image      optical image      remote sensing      Maowei Sea     
ZTFLH:  TP79  
Corresponding Authors: LI Wei     E-mail:;
Issue Date: 14 March 2022
E-mail this article
E-mail Alert
Articles by authors
Wei LI
Cite this article:   
Bo DING,Wei LI,Ke HU. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
URL:     OR
Fig.1  Map of the study area and sampling sites
悬浮物浓度/(mg·L-1) 取样
0.5 m深度 5 m深度 10 m深度
1 1 527 822 1 120 2019-09-18 324
2 1 038 1 276 1 201
3 924 1 262 1 020
4 1 030 1 064 989
5 892 1 180 1 104 2019-09-19 345
6 1 124 995 1 418
7 1 216 1 230 962
8 1 036 1 213 1 064
9 1 074 1 464 948
10 1 248 1 394 1 174
11 1 090 1 177 872 2019-09-20 367
12 1 120 1 226 1 186
13 1 149 1 374 1 281
14 1 352 964 1 053
15 1 103 1 204 1 204
Tab.1  In situ data of total suspended matter concentration in Maowei Sea
时相 参数
光学 GF-1C 8 2019-9-26
11: 44: 59 am
多光谱波段 增益 偏差
蓝光波段 0.029 0 0
绿光波段 0.038 2 0
红光波段 0.042 1 0
近红外波段 0.036 4 0
SAR GF-3 8 2019-9-4
11: 01: 40 am
C波段: (VH,VV)
分辨率: 4.5m×4.8m;
入射角: 42.787 378°~
47.954 950°
Tab.2  Details of remote sensing images used in study area
Fig.2  Relationship between TSMC and spectral reflectance
Fig.3  Regression relationships of measured TSMC and equivalent remote sensing reflectance
反演模型 验证点
最大值 最小值 Δmrpe
GF-1C 8 130.25 17.70 2.15 9.65
GF-3 7 230.87 34.14 5.57 15.13
Tab.3  Validations of two regreesion models
Fig.4  Distributions of retrieved TSMC based on different remote sensing images
Fig.5  Comparisons of retrieved TSMCs and in situ measurements
[1] 李京, 陈云浩, 刘志刚, 等. 海岛与海岸带环境遥感[M]. 北京: 科学出版社, 2010.
[1] Li J, Chen Y H, Liu Z G, et al. Remote sensing of island and coast environment[M]. Beijing: Science Press, 2010.
[2] Miller R L, McKee B A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters[J]. Remote Sensing of Environment, 2004, 93(1-2):259-266.
doi: 10.1016/j.rse.2004.07.012 url:
[3] Astoreca R, Doxaran D, Ruddick K, et al. Influence of suspended particle concentration,composition and size on the variability of inherent optical properties of the Southern North Sea[J]. Continental Shelf Research, 2012, 35(2):117-128.
doi: 10.1016/j.csr.2012.01.007 url:
[4] May C L, Koseff J R, Lucas L V, et al. Effects of spatial and temporal variability of turbidity on phytoplankton blooms[J]. Marine Ecology Progress Series, 2003, 254(6):111-128.
doi: 10.3354/meps254111 url:
[5] Ondrusek M, Stengel E, Kinkade C S, et al. The development of a new optical total suspended matter algorithm for the Chesapeake Bay[J]. Remote Sensing of Environment, 2012, 119:243-254.
doi: 10.1016/j.rse.2011.12.018 url:
[6] Group S W. GEOTRACES:An international study of the global marine biogeochemical cycles of trace elements and their isotopes[J]. Chemie der Erde, 2007, 67(2):85-131.
doi: 10.1016/j.chemer.2007.02.001 url:
[7] Ouillon S, Douillet P, Petrenko A, et al. Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters[J]. Sensors, 2008, 8(7):4165-85.
doi: 10.3390/s8074165 url:
[8] Shi L L, Mao Z, Wang Z. Retrieval of total suspended matter concentrations from high resolution WorldView-2 imagery:A case study of inland rivers[C]// IOP Conference Series:Earth and Environmental Science, 2018, 121(3):1-12.
[9] Larrarte F, Pons M N. Suspended solids concentration in wastewater:Influence of sampling conditions[J]. Urban Water Journal, 2011, 8(6):397-404.
doi: 10.1080/1573062X.2011.630094 url:
[10] Clark R N. The spectral reflectance of water-mineral mixtures at low temperatures[J]. Journal of Geophysical Research:Solid Earth, 1981, 86(b4):3074-3086.
[11] Kokaly R F, Clark R N, Swayze G A, et al. USGS Spectral Library Version 7[Z].U.S. Geological Survey Data Series 1035, 2017:1-68.
[12] Malinowski R, Groom G, Schwanghart W, et al. Detection and delineation of localized flooding from WorldView-2 multispectral data[J]. Remote Sensing, 2015, 7(11):14853-14875.
doi: 10.3390/rs71114853 url:
[13] Knaeps E, Ruddick K G, Doxaran D, et al. A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters[J]. Remote Sensing of Environment, 2015, 168:66-79.
doi: 10.1016/j.rse.2015.06.022 url:
[14] Wang L, Zhao D Z, Yang J H, et al. Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China[J]. Journal of Oceanography, 2012, 68(5):719-725.
doi: 10.1007/s10872-012-0129-5 url:
[15] Giannini M F C, Harari J, Ciotti A M, et al. The use of CBERS(China-Brazil earth resources satellite) to trace the dynamics of total suspended matter at an urbanized coastal area[J]. Brazilian Journal of Oceanography, 2017, 65(2):309-323.
doi: 10.1590/s1679-87592017135006502 url:
[16] Dekker A G, Vos R J, Peters S W M. Comparison of remote sensing data,model results and in situ data for total suspended matter(TSM) in the southern Frisian lakes[J]. The Science of the Total Environment, 2001, 268:197-214.
doi: 10.1016/S0048-9697(00)00679-3 url:
[17] 高晨, 徐健, 高丹, 等. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 自然资源遥感, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14.
doi: 10.6046/gtzyyg.2019.01.14
[17] Gao C, Xu J, Gao D, et al. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land and Resources, 2019, 31(1):101-109.doi: 10.6046/gtzyyg.2019.01.14.
doi: 10.6046/gtzyyg.2019.01.14
[18] Ngoc D D, Loisel H, Vantrepotte V, et al. A simple empirical band-ratio algorithm to assess suspended particulate matter from remote sensing over coastal and inland waters of Vietnam:Application to the VNREDSat-1/NAOMI sensor[J]. Water(Switzerland), 2020, 12(9):1-16.
[19] Kishino M, Tanaka A, Ishizaka J. Retrieval of Chlorophyll a,suspended solids,and colored dissolved organic matter in Tokyo Bay using ASTER data[J]. Remote Sensing of Environment, 2005, 99:66-74.
doi: 10.1016/j.rse.2005.05.016 url:
[20] Ciancia E, Campanelli A, Lacava T, et al. Modeling and multi-temporal characterization of total suspended matter by the combined use of Sentinel 2-MSI and Landsat 8-OLI Data:The Pertusillo Lake case study(Italy)[J]. Remote Sensing, 2020, 12(13):1-24.
doi: 10.3390/rs12010001 url:
[21] Moore G. Satellite remote sensing of water turbidity[J]. Hydrological Sciences Bulletin, 1980, 25(4):407-421.
doi: 10.1080/02626668009491950 url:
[22] Chen J F, Zagzebski J A, Madsen E L, et al. Tests of backscatter coefficient measurement using broadband pulses[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control, 1993, 40(5):603-607.
doi: 10.1109/58.238114 url:
[23] Lavarello R J, Ghoshal G, Oelze M L. On the estimation of backscatter coefficients using single-element focused transducers[J]. The Journal of the Acoustical Society of America, 2011, 129(5):2903-2911.
doi: 10.1121/1.3557036 url:
[24] 刘国祥, 刘文熙, 黄丁发. InSAR技术及其应用中的若干问题[J]. 测绘通报, 2001, 1:21-24.
[24] Liu G X, Liu W X, Huang D F. In SAR technology and its key problems in applications[J]. Bulletin of Surveying and Mapping, 2001, 1:21-24.
[25] Kritikos H, Yorinks L, Smith H. Suspended solids analysis using ERTS-A data[J]. Remote Sensing of Environment, 1974, 3:69-78.
doi: 10.1016/0034-4257(74)90039-X url:
[26] 王繁, 周斌, 徐建明, 等. 基于实测光谱的杭州湾悬浮物浓度杨反演模式[J]. 环境科学, 2008, 11:3022-3026.
[26] Wang F, Zhou B, Xu J M, et al. Remote sensing inversion mode of suspended particles concentration in Hangzhou Bay based on in situ measurement spectrum[J]. Environmental Science, 2008, 11:3022-3026.
[27] Shi W, Zhang Y L, Wang M H, et al. Deriving total suspended matter concentration from the near-infrared-based inherent optical properties over turbid waters:A case study in Lake Taihu[J]. Remote Sensing, 2018, 10(2):333-350.
doi: 10.3390/rs10020333 url:
[28] 陈炯, 贾海峰, 杨健, 等. 基于极化SAR的河流有机物污染监测研究[J]. 环境科学, 2010, 31(9):2017-2022.
[28] Chen J, Jia H F, Yang J, et al. Monitoring of organic pollutants in river based on polarimetric SAR[J]. Environmental Science, 2010, 31(9):2017-2022.
[29] 中国地质调查局. DD2014-03海岸带地质环境调查评价规范[S]. 北京:中国地质调查局, 2014.
[29] China Geological Survey. DD2014-03 Specification for survey and evaluation of coastal geological environment[S]. Beijing:China Geological Survey, 2014.
[30] 高分系列卫星介绍[N].
[30] Introduction of GF series satellites[N].
[31] Clark R N, Swayze G A, Wise R, et al. USGS digital spectral library splib06a[Z]. U.S.Geological Survey,Digital Data Series 231,2007.
[32] Xu J, Gao C, Wang Y. Extraction of spatial and temporal patterns of concentrations of chlorophyll-a and total suspended matter in Poyang Lake using GF-1 satellite data[J]. Remote Sensing, 2020, 12(4):1-21.
doi: 10.3390/rs12010001 url:
[33] 钟凯文, 刘旭拢, 解靓, 等. 基于遥感方法反演珠江三角洲西江干流悬浮泥沙分布研究[J]. 遥感应用, 2009, 12(3):49-52.
[33] Zhong K W, Liu X L, Xie L, et al. Study on inversion model for the suspended sediment concentration in the Pear River delta using remote sensing technology[J]. Remote Sensing Information, 2009, 12(3):49-52.
[34] Lee J S. A simple speckle smoothing algorithm for synthetic aperture Radar images[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC- 13(1):85-89.
[35] Lee JS, Wen J H, Ainsworth T L, et al. Improved sigma filter for speckle filtering of SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):202-213.
doi: 10.1109/TGRS.36 url:
[36] Lee J S, Grunes M R, Mango S A. Speckle reduction in multipolarization,multifrequency SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(4):535-544.
doi: 10.1109/36.135815 url:
[37] Lee J S, Grunes M, Schuler D, et al. Scattering-model-based Speckle filtering of polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44:176-187.
doi: 10.1109/TGRS.2005.859338 url:
[38] Tian S, Eltoft T. Gamma-WMAP:A wavelet based statistical speckle filter for SAR images[C]// 5th Nordic Signal Processing Symposium, 2002.
[39] López C, Fàbregas X, Mallorquí J, et al. Noise filtering of SAR interferometric phase based on wavelet transform[C]// International Geoscience and Remote Sensing Symposium(IGARSS), 2001:2928-2930.
[40] 卜方玲, 徐新. 一种基于小波分析的SAR图像斑点噪声滤波算法[J]. 武汉大学学报(信息科学版), 2001, 4:315-319.
[40] Bu F L, Xu X. Speckle filtering method of SAR images based on wavelet analysis[J]. Geomatics and Information Science of Wuhan University, 2001, 4:315-319.
[41] Cloude S R, Pottier E. A review of target decomposition theorems in Radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):498-518.
doi: 10.1109/36.485127 url:
[42] 曹芳, 洪文, 吴一戎. 基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J]. 电子学报, 2008, 3:543-546.
[42] Cao F, Hong W, Wu Y R. An unsupervised classification for fully polarimetric SAR data using Cloude-Pottier decomposition and agglomerative hierarchical clustering algorithm[J]. Acta Electronica Sinica, 2008, 3:543-546.
[43] 杨杰, 郎丰铠, 李德仁. 一种利用Cloude-Pottier分解和极化白化滤波的全极化SAR图像分类算法[J]. 武汉大学学报(信息科学版), 2011, 36(1):104-107.
[43] Yang J, Lang F K, Li D R. An unsupervised Wishart classification for fully polarimetric SAR image based on Cloude-Pottier decomposition and polarimetric whitening filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1):104-107.
[44] 曹仕, 刘湘南, 刘美玲, 等. 基于Radarsat-2目标极化分解H-α特征空间的海洋悬浮物浓度监测研究[J]. 热带海洋学报, 2013, 32(4):107-112.
[44] Cao S, Liu X N, Liu M L, et al. Monitoring marine suspended particulate matter concentration using full polarimetric SAR data of Radarsat-2[J]. Journal of Tropical Oceanography, 2013, 32(4):107-112.
[45] 黄洪辉, 廖秀丽, 戴明, 等. 茅尾海生态环境调查与现状评估报告[R]. 广州:中国水产科学研究院, 2013.
[45] Huang H H, Liao X L, Dai M, et al. Report of ecological environment and status assessment in Maowei Sea[R]. Guangzhou:Chinese Academy of Fishery Sciences, 2013.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[10] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[11] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[12] LI Hemou, BAI Juan, GAN Fuping, LI Xianqing, WANG Zekun. River discharge estimation based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
[13] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech