Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 218-229     DOI: 10.6046/zrzyyg.2021112
|
Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province
LIU Mingxing1,2(), LIU Jianhong1,2(), MA Minfei1,2, JIANG Ya1, ZENG Jingchao1,2
1. College of Urban and Environmental Science, Northwest University, Xi’an 710127, China
2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
Download: PDF(7242 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Major crops tend to receive far more attention in current remote sensing (RS) monitoring of vegetation than minor tree species with ecological and economic benefits. Zanthoxylum bungeanum Maxim (ZBM) is an important but niche ecological tree, and its fruits are common oil and medicinal materials. It is vital for the sustainable development of local economy, ecology, and society to obtain accurate information of planting area and spatial distribution ZBM in time. Using the GF-2 PMS images and the random forest algorithm, this study discussed the feasibility of RS monitoring of ZBM planting. Three classification schemes were designed using four classification features, namely spectral bands, normalized difference vegetation index (NDVI), textural features, and digital elevation model (DEM). Furthermore, this study explored the role of different classification features in identifying ZBM by analyzing the classification accuracy of the schemes. Results show that it is difficult to obtain satisfactory classification accuracy when only spectral band characteristics were used (overall accuracy: 65.90%). Combining NDVI and DEM with the spectral band characteristics can slightly improve the classification effect (overall accuracy: 67.67%). After textural features were further combined, the overall accuracy was greatly increased (74.43%). This indicates that textural features play an important role in monitoring ZBM planting. As revealed by the results of the optimal classification scheme, ZBM in Linxia, Gansu Province is mainly distributed along the Yellow River and around the Liujiaxia Reservoir, with a total area of 231.59 km2, which accounts for 22.56% of the total area of the study area. The area of ZBM planted in the patterns of single cropping and mixed cropping is 189.06 km2 and 42.53 km2, respectively. More than 90% of ZBM grows at an elevation of [1 683, 2 300) m and its number tends to decrease, increase, and decrease successively with an increase in the elevation. Moreover, 58% of ZBM are planted in regions with a slope of [8, 25)°. Overall, GF-2 PMS images have great potential in monitoring ZBM planting. The development of RS-based identification methods of ZBM will assist in the regulation of the local ecological industry and the layout of subsequent ecological engineering. Furthermore, it will provide a strong reference for the remote sensing monitoring of ecological tree species or a minority of vegetation species in other regions.

Keywords GF-2 PMS images      Zanthoxylum bungeanum Maxim      random forest      ecological engineering      planting monitoring     
ZTFLH:  P23  
Corresponding Authors: LIU Jianhong     E-mail: mingxingliu@stumail.nwu.edu.cn;jhliu@nwu.edu.cn
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingxing LIU
Jianhong LIU
Minfei MA
Ya JIANG
Jingchao ZENG
Cite this article:   
Mingxing LIU,Jianhong LIU,Minfei MA, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021112     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/218
Fig.1  Location and geographic extent of the study area
参数 相机 波段
全色 多光谱
光谱范围/μm 0.45~0.90 0.45~0.52 蓝光(B1)
0.52~0.59 绿光(B2)
0.63~0.69 红光(B3)
0.77~0.89 近红外(B4)
空间分辨率/m 1 4
幅宽/km 45(2台相机组合)
重访周期/d 5
覆盖周期/d 69
Tab.1  GF-2 PMS satellite sensor specifications
类型 样本数 类型 样本数
纯花椒 318 稀疏草地 325
混合花椒 321 浑浊水体 294
玉米 329 清澈水体 204
树林 168 人工地表 226
茂密草地 453 裸地 262
Tab.2  Field samples collected in the study
Fig.2  Characteristics of ten land cover types on the pan-sharpened GF-2 PMS image
Fig.3  Texture characteristic of land cover types based on different window sizes
Fig.4  Reflectance of land cover types on the pan-sharpened image of GF-2 PMS
Fig.5  Separability of classes based on JM distance
Fig.6  Classification accuracies of S1, S2 and S3 classification schemes
Fig.7  Distribution of ZBM in the study area
Fig.8  Zooming in on random forest classified results
Fig.9  Distributions of ZBM in altitude and slope
Fig.10  Consistency analysis of land cover types results based on the optimal classification scheme (S3)
[1] 孔繁业. 临夏州林业可持续发展的思考[J]. 甘肃农业, 2006(2):104-105.
[1] Kong F Y. Thinking on the sustainable development of forestry in Linxia Prefecture[J]. Gansu Agriculture, 2006(2):104-105.
[2] 刘萍. 临夏州花椒生产特点及产业发展建议[J]. 甘肃林业科技, 2003(4):80-83.
[2] Liu P. Characteristics of Zanthoxylum bungeanum Maxim in Linxia Prefecture and suggestions for industrial development[J]. Journal of Gansu Forestry Science and Technology, 2003(4):80-83.
[3] 安树康. 临夏州花椒发展现状及对策[J]. 林业科技开发, 2004(4):76-78.
[3] An S K. The development status and countermeasures of Zanthoxylum bungeanum in Linxia Prefecture[J]. Journal of Forestry Engineering, 2004(4):76-78.
[4] Liu J, Li S, Ouyang Z, et al. Ecological and socioeconomic effects of China’s policies for ecosystem services[J]. Proceedings of the National Academy of Sciences, 2008, 105(28):9477-9482.
doi: 10.1073/pnas.0706436105 url: https://pnas.org/doi/full/10.1073/pnas.0706436105
[5] Song X, Peng C, Zhou G, et al. Chinese grain for green program led to highly increased soil organic carbon levels:A meta-analysis[J]. Scientific Reports, 2014(4):4460.
[6] 杨学毅, 刘萍, 沈平, 等. 临夏州花椒有害生物种类及分布[J]. 甘肃林业科技, 2013, 38(4):25-30.
[6] Yang X Y, Liu P, Shen P, et al. Species and distribution of pests of Zanthoxylum bungeanum in Linxia Prefecture[J]. Journal of Gansu forestry Science and Technology, 2013, 38(4):25-30.
[7] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(92):79-97.
[8] Ferreira M P, Alves D S, Shimabukuro Y E. Forest dynamics and land-use transitions in the Brazilian Atlantic Forest:The case of sugarcane expansion[J]. Regional Environmental Change, 2015, 15(2):365-377.
doi: 10.1007/s10113-014-0652-6 url: http://link.springer.com/10.1007/s10113-014-0652-6
[9] Waldner F, Lambert M J, Li W, et al. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series[J]. Remote Sensing, 2015, 7(8):10400-10424.
doi: 10.3390/rs70810400 url: http://www.mdpi.com/2072-4292/7/8/10400
[10] Xu X, Conrad C, Doktor D. Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS)[J]. Remote Sensing, 2017, 9(3):254.
doi: 10.3390/rs9030254 url: http://www.mdpi.com/2072-4292/9/3/254
[11] Hunt M L, Blackburn G A, Carrasco L, et al. High resolution wheat yield mapping using Sentinel-2[J]. Remote Sensing of Environment, 2019, 233:111410.
doi: 10.1016/j.rse.2019.111410 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719304298
[12] Cheng Z, Meng J, Wang Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms[J]. Remote Sensing, 2016, 8(4):303.
doi: 10.3390/rs8040303 url: http://www.mdpi.com/2072-4292/8/4/303
[13] Mateo-Sanchis A, Piles M, Munoz-Mari J, et al. Synergistic integration of optical and microwave satellite data for crop yield estimation[J]. Remote Sensing of Environment, 2019, 234:111460.
doi: 10.1016/j.rse.2019.111460 pmid: 31798192
[14] Sakamoto T. Incorporating environmental variables into a MODIS-based crop yield estimation method for United States corn and soybeans through the use of a random forest regression algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160:208-228.
doi: 10.1016/j.isprsjprs.2019.12.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619303065
[15] Sakamoto T, Gitelson A A, Arkebauer T J. MODIS-based corn grain yield estimation model incorporating crop phenology information[J]. Remote Sensing of Environment, 2013, 131:215-231.
doi: 10.1016/j.rse.2012.12.017 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571200483X
[16] Tang X, Bullock E L, Olofsson P, et al. Near real-time monitoring of tropical forest disturbance:New algorithms and assessment framework[J]. Remote Sensing of Environment, 2019, 224:202-218.
doi: 10.1016/j.rse.2019.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719300598
[17] Gómez C, White J C, Wulder M A. Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation[J]. Remote Sensing of Environment, 2011, 115(7):1665-1679.
doi: 10.1016/j.rse.2011.02.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711000757
[18] Coppin P R, Bauer M E. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4):918-927.
doi: 10.1109/36.298020 url: http://ieeexplore.ieee.org/document/298020/
[19] Hornero A, Hernández-Clemente R, North P R J, et al. Monitoring the incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations,airborne imaging spectroscopy and Sentinel-2 time series through 3-D radiative transfer modelling[J]. Remote Sensing of Environment, 2020, 236:111480.
doi: 10.1016/j.rse.2019.111480 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719304997
[20] Liu Z, Wang S. Detecting changes of wheat vegetative growth and their response to climate change over the North China Plain[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12):4630-4636.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[21] Oumar Z, Mutanga O. Integrating environmental variables and WorldView-2 image data to improve the prediction and mapping of Thaumastocoris peregrinus (bronze bug) damage in plantation forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87:39-46.
doi: 10.1016/j.isprsjprs.2013.10.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613002323
[22] Zhong L, Hu L, Yu L, et al. Automated mapping of soybean and corn using phenology[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:151-164.
doi: 10.1016/j.isprsjprs.2016.05.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616301071
[23] Sakamoto T, Wardlow B D, Gitelson A A, et al. A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data[J]. Remote Sensing of Environment, 2010, 114(10):2146-2159.
doi: 10.1016/j.rse.2010.04.019 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571000132X
[24] Berger K, Verrelst J, Féret J-B, et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102174.
doi: 10.1016/j.jag.2020.102174 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243420303500
[25] Xie Q, Dash J, Huete A, et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 80:187-195.
doi: 10.1016/j.jag.2019.04.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243419301199
[26] Chauhan S, Srivastava H S, Patel P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data[J]. Remote Sensing of Environment, 2018, 216:28-43.
doi: 10.1016/j.rse.2018.06.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718302864
[27] Gopal S, Woodcock C. Remote sensing of forest change using artificial neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2):398-404.
doi: 10.1109/36.485117 url: http://ieeexplore.ieee.org/document/485117/
[28] Blackard J A, Dean D J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables[J]. Computers and Electronics in Agriculture, 1999, 24(3):131-151.
doi: 10.1016/S0168-1699(99)00046-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0168169999000460
[29] Ingram J C, Dawson T P, Whittaker R J. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks[J]. Remote Sensing of Environment, 2005, 94(4):491-507.
doi: 10.1016/j.rse.2004.12.001 url: https://linkinghub.elsevier.com/retrieve/pii/S003442570400361X
[30] Peng C, Wen X. Recent applications of artificial neural networks in forest resource management:An overview[R]// Corté U,Sànche-Marrè M.Environmental Decision Support Systems and Artificial Intelligence.AAAI technical reports WS-99-07, 1999.
[31] Huang C, Song K, Kim S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008, 112(3):970-985.
doi: 10.1016/j.rse.2007.07.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425707003951
[32] Omer G, Mutanga O, Abdel-Rahman E M,et al.Performance of support vector machines and artificial neural network for mapping endangered tree species using WorldView-2 data in Dukuduku forest,South Africa[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4825-4840.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[33] Raczko E, Zagajewski B. Comparison of support vector machine,random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images[J]. European Journal of Remote Sensing, 2017, 50(1):144-154.
doi: 10.1080/22797254.2017.1299557 url: https://www.tandfonline.com/doi/full/10.1080/22797254.2017.1299557
[34] Sesnie S E, Finegan B, Gessler P E, et al. The multispectral separability of Costa Rican rainforest types with support vector machines and random forest decision trees[J]. International Journal of Remote Sensing, 2010, 31(11):2885-2909.
doi: 10.1080/01431160903140803 url: https://www.tandfonline.com/doi/full/10.1080/01431160903140803
[35] Mellor A, Haywood A, Stone C, et al. The performance of random forests in an operational setting for large area sclerophyll forest classification[J]. Remote Sensing, 2013, 5(6):2838-2856.
doi: 10.3390/rs5062838 url: http://www.mdpi.com/2072-4292/5/6/2838
[36] Wyniawskyj N S, Napiorkowska M, Petit D, et al. Forest monitoring in Guatemala using satellite imagery and deep learning[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:6598-6601.
[37] Sylvain J D, Drolet G, Brown N. Mapping dead forest cover using a deep convolutional neural network and digital aerial photography[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156:14-26.
doi: 10.1016/j.isprsjprs.2019.07.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619301777
[38] 薛传平, 高志海, 孙斌, 等. 浑善达克沙地榆树疏林的高分辨率遥感识别方法[J]. 自然资源遥感, 2018, 30(4):74-81.doi: 10.6046/gtzyyg.2018.04.12.
doi: 10.6046/gtzyyg.2018.04.12
[38] Xue C P, Gao Z H, Sun B, et al. Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land[J]. Remote Sensing for Land and Resources, 2018, 30(4):74-81.doi: 10.6046/gtzyyg.2018.04.12.
doi: 10.6046/gtzyyg.2018.04.12
[39] 杨欢, 邓帆, 张佳华, 等. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 自然资源遥感, 2020, 32(3):208-215.doi: 10.6046/gtzyyg.2020.03.27.
doi: 10.6046/gtzyyg.2020.03.27
[39] Yang H, Deng F, Zhang J H, et al. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):208-215.doi: 10.6046/gtzyyg.2020.03.27.
doi: 10.6046/gtzyyg.2020.03.27
[40] Wang M, Liu Z, Ali Baig M H, et al. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms[J]. Land Use Policy, 2019, 88:104190.
doi: 10.1016/j.landusepol.2019.104190 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837719307185
[41] You N, Dong J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161:109-123.
doi: 10.1016/j.isprsjprs.2020.01.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271620300010
[42] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 自然资源遥感, 2018, 30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
doi: 10.6046/gtzyyg.2018.04.04
[42] Guo X Y, Li K, Wang Z Y, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM + SFS strategy[J]. Remote Sensing for Land and Resources, 2018, 30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
doi: 10.6046/gtzyyg.2018.04.04
[43] Liu M, Liu J, Atzberger C, et al. Zanthoxylum bungeanum Maxim mapping with multi-temporal Sentinel-2 images:The importance of different features and consistency of results[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174:68-86.
doi: 10.1016/j.isprsjprs.2021.02.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271621000368
[44] Waldner F, Chen Y, Lawes R, et al. Needle in a haystack:Mapping rare and infrequent crops using satellite imagery and data balancing methods[J]. Remote Sensing of Environment, 2019, 233:111375.
doi: 10.1016/j.rse.2019.111375 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719303943
[45] Mayes S, Massawe F, Alderson P, et al. The potential for underutilized crops to improve security of food production[J]. Journal of Experimental Botany, 2012, 63(3):1075-1079.
doi: 10.1093/jxb/err396 pmid: 22131158
[46] Tscharntke T, Clough Y, Wanger T C, et al. Global food security,biodiversity conservation and the future of agricultural intensification[J]. Biological Conservation, 2012, 151(1):53-59.
doi: 10.1016/j.biocon.2012.01.068 url: https://linkinghub.elsevier.com/retrieve/pii/S0006320712000821
[47] Wu F, Fang X, Meng Q, et al. Magneto- and litho-stratigraphic records of the Oligocene-Early Miocene climatic changes from deep drilling in the Linxia Basin,Northeast Tibetan Plateau[J]. Global and Planetary Change, 2017, 158:36-46.
doi: 10.1016/j.gloplacha.2017.09.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0921818117301388
[48] 肖国举, 王静. 黄土高原集水农业研究进展[J]. 生态学报, 2003(5):1003-1011.
[48] Xiao G J, Wang J. Research on progress of rainwater harvesting agriculture on the Loess Plateau of China[J]. Acta Ecologica Sinica, 2003(5):1003-1011.
[49] Chen Y, Zhang C, Wang S, et al. Extracting crop spatial distribution from Gaofen 2 imagery using a convolutional neural network[J]. Applied Sciences, 2019, 9(14):2917.
doi: 10.3390/app9142917 url: https://www.mdpi.com/2076-3417/9/14/2917
[50] 贾振华. 论临夏州花椒产业发展现状及对策[J]. 中国农业信息, 2014, 22:60-61.
[50] Jia Z H. Discussion on the current situation and countermeasures of Zanthoxylum bungeanum industry[J]. China Agricultural Informatics, 2014, 22:60-61.
[51] Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2):127-150.
doi: 10.1016/0034-4257(79)90013-0 url: https://linkinghub.elsevier.com/retrieve/pii/0034425779900130
[52] Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425797001041
[53] Zhu X, Liu D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015(102):222-231.
[54] Yang F, Matsushita B, Fukushima T, et al. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012(72):90-98.
[55] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973(6):610-621.
[56] Wood E M, Pidgeon A M, Radeloff V C, et al. Image texture as a remotely sensed measure of vegetation structure[J]. Remote Sensing of Environment, 2012(121):516-526.
[57] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[58] Hao P, Zhan Y, Wang L, et al. Feature selection of time series MODIS data for early crop classification using random forest:A case study in Kansas,USA[J]. Remote Sensing, 2015, 7(5):5347-5369.
doi: 10.3390/rs70505347 url: http://www.mdpi.com/2072-4292/7/5/5347
[59] Rodriguez-Galiano V F, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012(67):93-104.
[60] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201.
doi: 10.1016/S0034-4257(01)00295-4 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425701002954
[61] Ifarraguerri A, Prairie M W. Visual method for spectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2):101-106.
doi: 10.1109/LGRS.2003.822879 url: http://ieeexplore.ieee.org/document/1291391/
[62] Li G, Sun S, Han J, et al. Impacts of Chinese grain for green program and climate change on vegetation in the Loess Plateau during 1982—2015[J]. Science of the Total Environment, 2019, 660:177-187.
doi: 10.1016/j.scitotenv.2019.01.028 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719300348
[63] Li S, Yang S, Liu X, et al. NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region,Central China[J]. Remote Sensing, 2015, 7(9):11163-11182.
doi: 10.3390/rs70911163 url: http://www.mdpi.com/2072-4292/7/9/11163
[64] Li J, Peng S, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247:260-270.
doi: 10.1016/j.agrformet.2017.08.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0168192317302617
[65] Anwer R M, Khan F S, van de Weijer J, et al. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138:74-85.
doi: 10.1016/j.isprsjprs.2018.01.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271618300285
[66] Ferreira M P, Wagner F H, Aragão L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149:119-131.
doi: 10.1016/j.isprsjprs.2019.01.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619300280
[67] Guo W, Rees W G. Altitudinal forest-tundra ecotone categorization using texture-based classification[J]. Remote Sensing of Environment, 2019, 232:111312.
doi: 10.1016/j.rse.2019.111312 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425719303311
[68] Drusch M, Del Bello U, Carlier S, et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment, 2012, 120:25-36.
doi: 10.1016/j.rse.2011.11.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712000636
[69] Roy D P, Wulder M A, Loveland T R, et al. Landsat-8:Science and product vision for terrestrial global change research[J]. Remote Sensing of Environment, 2014, 145:154-172.
doi: 10.1016/j.rse.2014.02.001 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571400042X
[1] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[2] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[3] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[4] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[5] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[6] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[7] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[8] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[9] WANG Xuejie, SHI Guoping, ZHOU Ziqin, ZHEN Yang. Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(2): 105-111.
[10] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[11] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[12] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[13] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[14] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[15] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech