Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 96-107     DOI: 10.6046/zrzyyg.2023356
|
Hazard assessment of potential glacial lake outburst floods in the Yadong River basin based on multisource satellite data
ZHU Dengxin1,2,3(), TU Jienan1(), SUN Haibing1,2, HAN Zhenjie1,2, TONG Liqiang1, GUO Zhaocheng1, YU Jiangkuan1, YAN Shuhao1, HE Peng1, ZHU Junjie4
1. China Aero Geophysical and Remote Sensing Center of Natural Resources, Beijing 100083, China
2. College of Engineering and Technology, China University of Geosciences(Beijing), Beijing 100083, China
3. Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China
4. Yellow River Mudan Bureau, Heze 274009, China
Download: PDF(8207 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, global warming has caused significant glacier retreats in the Qinghai-Tibet Plateau, leading to the rapid expansion of glacial lakes and an increased threat of glacial lake outburst floods (GLOFs). The Yadong River basin, located in Shigatse, Tibet, hosts a large number of glacial lakes. In 1940, a GLOF from Qiongbixiama Co severely damaged Yadong County 40 km downstream, causing house collapse and infrastructure destruction. Therefore, assessing the hazards of potential GLOSs in the Yadong River basin is vital for protecting the safety of people’s lives and property. This study conducted a survey and assessment of potential GLOFs based on Gaofen satellite data and Landsat remote sensing images. It derived basic elements including glaciers, glacial lakes, and moraines through remote sensing image interpretation. The results show that the Yadong River basin develops 28 glaciers and 228 glacial lakes, covering total areas of 34.03 km2 and 7.79 km2, respectively. The past 30 years have seen slight retreats of glaciers and slight expansions of glacial lakes. Combined with the elements derived from remote sensing images, the analytic hierarchy process and fuzzy comprehensive assessment were employed to preliminarily assess the hazard of regional glacial lakes, delineating the distribution of potentially hazardous glacial lakes. The assessment results reveal 15 potentially hazardous glacial lakes in the Yadong River basin, including five highly hazardous, eight moderately hazardous, and two slightly hazardous glacial lakes. These lakes are primarily distributed in the northeastern and northwestern high mountain areas in the Yadong River basin.

Keywords glacial lake outburst flood      remote sensing      hazard assessment      Yadong River basin     
ZTFLH:  TP79  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dengxin ZHU
Jienan TU
Haibing SUN
Zhenjie HAN
Liqiang TONG
Zhaocheng GUO
Jiangkuan YU
Shuhao YAN
Peng HE
Junjie ZHU
Cite this article:   
Dengxin ZHU,Jienan TU,Haibing SUN, et al. Hazard assessment of potential glacial lake outburst floods in the Yadong River basin based on multisource satellite data[J]. Remote Sensing for Natural Resources, 2025, 37(2): 96-107.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023356     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/96
Fig.1  Geographic location map of Yadong River basin
序号 卫星 传感器 分辨率/m 时间 行列号或经纬度
1 Landsat5 TM传感器 30 19910921 139041
2 Landsat5 TM传感器 30 19911007 139041
3 Landsat5 TM传感器 30 19911108 139041
4 Landsat5 TM传感器 30 19920324 139041
5 Landsat5 TM传感器 30 19920416 139041
6 Landsat8 OLI传感器 15 20201123 139041
7 Landsat8 OLI传感器 15 20201225 139041
8 Landsat8 OLI传感器 15 20210211 139041
9 高分一号B星 PMS传感器 2 20210827 E89.0_N27.4
10 高分一号D星 PMS传感器 2 20210101 E89.1_N28.0
Tab.1  Specific information of remote sensing data
地貌和地质条件 定性/定量 有关属性 数据来源
冰湖类型 定性 冰湖成因类型 高分影像
冰湖后缘陡坎高度 定量 高差 DEM数据
冰湖与冰川距离 定量 距离 高分影像
补给冰川的冰舌坡度 定量 坡度 DEM数据
危险冰体的面积与冰湖面积的比例 定量 危险面积、面积比 高分影像
冰湖面积 定量 面积 高分影像
冰碛坝体坝顶较窄 定量 坝顶宽度 高分影像
冰碛垄坡度较陡 定量 平均坡度、最大坡度 DEM数据
冰湖扩张速率 定量 扩张速率 高分影像
补给冰川为悬冰川 定性 冰川形态类型 高分影像
冰湖与终碛垄和补给冰川的相对位置 定性 相对位置 高分影像
Tab.2  Detailed information and source of evaluation elements of glacier lake break disaster
要素 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
X1 1 1 1 2 2 2 3 5 5 7 7
X2 1 1 1 2 2 2 3 5 5 7 7
X3 1 1 1 2 2 2 3 5 5 7 7
X4 1/2 1/2 1/2 1 1 1 2 3 4 6 6
X5 1/2 1/2 1/2 1 1 1 2 3 4 6 6
X6 1/2 1/2 1/2 1 1 1 2 3 4 6 6
X7 1/3 1/3 1/3 1/2 1/2 1/2 1 3 3 5 5
X8 1/5 1/5 1/5 1/3 1/3 1/3 1/3 1 2 4 4
X9 1/5 1/5 1/5 1/4 1/4 1/4 1/3 1/2 1 3 3
X10 1/7 1/7 1/7 1/6 1/6 1/6 1/5 1/4 1/3 1 1
X11 1/7 1/7 1/7 1/6 1/6 1/6 1/5 1/4 1/3 1 1
Tab.3  Judgment matrix of glacier lake outburst element
区间 I II III
ax≤(a+b)/2 1 4 - 1 4 s i n 2 π b - a x - 3 a + b 4 3 4 + 1 4 s i n 2 π b - a x - 3 a + b 4 0
(a+b)/2<xb 3 4 + 1 4 s i n 2 π b - a 3 a + b 4 - x 1 4 - 1 4 s i n 2 π b - a 3 a + b 4 - x 0
b<x≤(b+c)/2 0 1 4 - 1 4 s i n 2 π c - b x - 3 b + c 4 3 4 + 1 4 s i n 2 π c - b x - 3 b + c 4
(b+c)/2<xc 0 3 4 + 1 4 s i n 2 π c - b 3 b + c 4 - x 1 4 - 1 4 s i n 2 π c - b 3 b + c 4 - x
x>c 0 1 2 s i n c π 2 x 1 - 1 2 s i n c π 2 x
Tab.4  The membership function corresponding to the values between regions
Fig.2  Distribution of Yadong River basin and its sub-basins
Fig.3  Distribution of glacier and glacier lake in Yadong River basin
流域 年份
1991年 2021年 变化
数量/条 面积/
km2
数量/条 面积/
km2
数量变
化/条
面积变
化/km2
康布麻曲流域 25 32.446 20 30.516 -5 -1.93
麻曲流域 8 4.062 8 3.510 0 -0.55
合计 33 36.508 28 34.026 -5 -2.48
Tab.5  Distribution of glaciers in different basins
冰湖 1991年 2021年 变化
数量/个 面积/km2 数量/个 面积/km2 数量变化/个 面积/km2
康布麻曲流域 98 3.779 108 3.701 10 -0.078
麻曲流域 30 1.101 27 1.062 -3 -0.039
曲姆曲流域 11 0.718 13 0.836 2 0.118
浦马朗流域 10 0.705 13 0.724 3 0.019
洞朗曲流域 13 0.378 15 0.401 2 0.023
鲁林曲流域 5 0.255 11 0.433 6 0.178
加朗曲流域 6 0.158 10 0.180 4 0.022
恰尔塘曲流域 8 0.159 10 0.118 2 -0.041
曲达康曲流域 11 0.137 11 0.171 0 0.034
比吾塘曲流域 9 0.117 10 0.165 1 0.048
合计 201 7.507 228 7.791 27 0.284
Tab.6  Statistics of glacier lakes by basin
序号 冰湖编码 面积/m2 经度/(°) 纬度/(°) 危险
等级
1 GL088889E27842N 10 668.90 88.889 6 27.842 5
2 GL088776E27566N 4 058.83 88.776 2 27.566 7
3 GL088921E27847N 42 114.90 88.921 9 27.847 4
4 GL088892E27832N 23 437.70 88.892 6 27.832 8
5 GL088875E27817N 36 026.00 88.875 9 27.817 6
6 GL088884E27804N 15 963.40 88.884 1 27.804 7
7 GL088930E27899N 155 118.00 88.930 0 27.899 9
8 GL088790E27496N 159 937.00 88.790 8 27.496 7
9 GL088954E27914N 17 982.50 88.954 5 27.914 2
10 GL088956E27911N 13 013.70 88.956 8 27.911 6
Tab.7  Information table of glacier lake in Kangbumaqu basin
Fig.4  Distribution of glacier lakes with different risk levels in Kangbumaqu basin
序号 冰湖编码 面积/m2 经度/(°) 纬度/(°) 危险
等级
1 GL089230E27808N 562 194.00 89.230 5 27.808 8
2 GL089221E27780N 9 330.24 89.221 6 27.780 0
3 GL089227E27795N 10 876.20 89.227 4 27.795 4
4 GL089226E27794N 12 770.20 89.226 3 27.794 3
5 GL089220E27794N 35 529.60 89.220 1 27.794 5
Tab.8  Information table of glacier lake in Maqu basin
Fig.5  Classification of dangerous ice lakes in Maqu basin
Fig.6  High resolution remote sensing image of Changgangco and its recharge glaciers
Fig.7  Field survey photos of Changgangco
Fig.8  Distribution of Qujia-Naga east water depth variation simulation
Fig.9  Distribution of Qujia-Naga east section water depth simulation
Fig.10  Water depth simulation distribution of citizen zone in Yadong County town and round area
Fig.11  Water depth simulation distribution map of Yadong County town and round area
[1] Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5(6): eaav7266.
[2] 余斌, 何元勋, 刘秧. 冰碛湖溃决易发性的定量评价[J]. 地球科学, 2022, 47(6):1999-2014.
[2] Yu B, He Y X, Liu Y. Quantitative susceptibility assessment of breach of moraine-dammed lakes[J]. Earth Science, 2022, 47(6):1999-2014.
[3] 张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43(6): 1673-1692.
doi: 10.7522/j.issn.1000-0240.2021.0066
[3] Zhang T G, Wang W C, Gao T G, et al. Glacial lake outburst floods on the high Mountain Asia: A review[J]. Journal of Glaciology and Geocryology, 2021, 43(6):1673-1692.
[4] 杨兴国, 曹志翔, 邢会歌, 等. 冰碛土滑坡—泥石流—堰塞湖灾害链发展过程机理与模拟技术研究构想[J]. 工程科学与技术, 2022, 54(3): 1-13.
[4] Yang X G, Cao Z X, Xing H G, et al. Research framework of the program: Dynamic evolution mechanism and simulation of moraine landslide—debris flow—dammed lake disaster chain[J]. Advanced Engineering Sciences, 2022, 54(3):1-13.
[5] 王欣, 刘时银, 姚晓军, 等. 我国喜马拉雅山区冰湖遥感调查与编目[J]. 地理学报, 2010, 65(1):29-36.
[5] Wang X, Liu S Y, Yao X J, et al. Glacier lake investigation and inventory in the Chinese Himalayas based on the remote sensing data[J]. Acta Geographica Sinica, 2010, 65(1):29-36.
doi: 10.11821/xb201001004
[6] 程尊兰, 朱平一, 宫怡文. 典型冰湖溃决型泥石流形成机制分析[J]. 山地学报, 2003, 21(6):716-720.
[6] Cheng Z L, Zhu P Y, Gong Y W. Typical debris flow triggered by ice-lake break[J]. Journal of Mountain Research, 2003, 21(6):716-720.
[7] Zhang G Q, Yao T D, Xie H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015, 131:148-157.
[8] Zheng G X, Allen S K, Bao A, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11(5): 411-417.
[9] 王欣, 刘时银, 郭万钦, 等. 我国喜马拉雅山区冰碛湖溃决危险性评价[J]. 地理学报, 2009, 64(7): 782-790.
[9] Wang X, Liu S Y, Guo W Q, et al. Hazard assessment of moraine-dammed lake outburst floods in the Himalayas,China[J]. Acta Geographica Sinica, 2009, 64(7):782-790.
[10] 车涛, 晋锐, 李新, 等. 近 20 a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析[J]. 冰川冻土, 2004, 26(4):397-402.
[10] Che T, Jin R, Li X, et al. Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu Basin of Tibet during the last two decades[J]. Journal of Glaciology and Geocryology, 2004, 26(4):397-402.
[11] 王跃, 安天浩. 典型冰湖溃决泥石流成因分析及危险性评价体系探讨[J]. 矿产勘查, 2018, 9(4):727-731.
[11] Wang Y, An T H. Discussion on causes analysis and risk assessment system the typical glacial lake outburst debris flow[J]. Mineral Exploration, 2018, 9(4):727-731.
[12] 刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6): 1335-1347.
doi: 10.7522/j.issn.1000-0240.2019.0073
[12] Liu J K, Zhang J J, Gao B, et al. An overview of glacial lake outburst flood in Tibet,China[J]. Journal of Glaciology and Geocryology, 2019, 41(6):1335-1347.
[13] 周路旭, 刘建康, 李元灵. 川藏交通廊道龙利空泽错冰碛湖溃决危险性评价[J]. 地理与地理信息科学, 2020, 36(6):32-39,47.
[13] Zhou L X, Liu J K, Li Y L. Outburst risk assessment of Longlikongze Moraine Lake in Sichuan-Tibet traffic corridor[J]. Geography and Geo-Information Science, 2020, 36(6):32-39,47.
[14] 乐茂华, 唐川, 张丹丹, 等. 基于逻辑回归法的西藏地区冰湖溃决危险性预测模型[J]. 自然灾害学报, 2014, 23(5): 177-184.
[14] Le M H, Tang C, Zhang D D, et al. Logistic regression model- based approach for predicting the hazard of glacial lake outburst in Tibet[J]. Journal of Natural Disasters, 2014, 23(5):177-184.
[15] Richardson S D, Reynolds J M. An overview of glacial hazards in the Himalayas[J]. Quaternary International, 2000, 65:31-47.
[16] 亚东县人民政府. 亚东县概况[EB/OL]. [2021-06-23] http://www.ydx.gov.cn/news-detail.thtml?cid=136260.
url: http://www.ydx.gov.cn/news-detail.thtml?cid=136260
[16] Yadong County People's Government. Overview of Yadong County[EB/OL]. [2021-06-23] http://www.ydx.gov.cn/news-detail.thtml?cid=136260.
url: http://www.ydx.gov.cn/news-detail.thtml?cid=136260
[17] 童立强, 祁生文, 安国英, 等. 喜马拉雅山地区重大地质灾害遥感调查研究[M]. 北京: 科学出版社, 2013:116.
[17] Tong L Q, Qi S W, An G Y, et al. Remote sensing investigation of major geological disasters in Himalayan region[M]. Beijing: Science Press, 2013:116.
[18] 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70(1):3-16.
doi: 10.11821/dlxb201501001
[18] Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70(1):3-16.
doi: 10.11821/dlxb201501001
[19] 姚晓军, 刘时银, 韩磊, 等. 冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究[J]. 地理学报, 2017, 72(7):1173-1183.
doi: 10.11821/dlxb201707004
[19] Yao X J, Liu S Y, Han L, et al. Definition and classification systems of glacial lake for inventory and hazards study[J]. Acta Geographica Sinica, 2017, 72(7):1173-1183.
doi: 10.11821/dlxb201707004
[20] 王世金, 汪宙峰. 冰湖溃决灾害综合风险评估与管控:以中国喜马拉雅山区为例[M]. 北京: 中国社会科学出版社, 2017: 91-95.
[20] Wang S J, Wang Z F. Comprehensive risk assessment and control of glacial lake outburst disaster:A case study of Himalayan Mountain area in China[M]. Beijing: China Social Sciences Press, 2017: 91-95.
[21] 陈晓清, 崔鹏, 杨忠, 等. 近15 a喜玛拉雅山中段波曲流域冰川和冰湖变化[J]. 冰川冻土, 2005, 27(6):793-800.
[21] Chen X Q, Cui P, Yang Z, et al. Change in glaciers and glacier lakes in Boiqu River basin,middle Himalayas during last 15 years[J]. Journal of Glaciology and Geocryology, 2005, 27(6):793-800.
[22] 范建容, 李炫, 游勇, 等. 川藏铁路然乌—通麦段冰湖溃决危险性模糊综合评价及应用[C]// “川藏铁路建设的挑战与对策”2016 学术交流会论文集.中国科学院水利部成都山地灾害与环境研究所, 2016.
[22] Fan J R, Li X, You Y, et al. Fuzzy comprehensive assessment of glacier-lake outburst from Ranwu to Tongmai along Sichuan-Tibet railway[C]// "Challenges and Countermeasures of Sichuan-Tibet Railway Construction" Proceedings of 2016 Academic Exchange Conference.Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, 2016.
[23] 崔志超, 王俊豪, 崔传峰, 等. 基于层次分析法和模糊数学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报, 2020, 31(1):44-50.
[23] Cui Z C, Wang J H, Cui C F, et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and fuzzy mathematics[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1):44-50.
[1] LIU Yiyao, WU Taixia, WANG Shudong, JU Maosen. Exploring the performance of riparian zones in reducing non-point source pollution by coupling remote sensing with the SWAT model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 256-264.
[2] XIE Guoxue, HUANG Qiting, YANG Shaoe, LIANG Yongjian, QIN Zelin, SU Qiuqun. Exploring the monitoring technology for Huanglongbing at the plot scale under satellite-ground collaboration[J]. Remote Sensing for Natural Resources, 2025, 37(2): 30-38.
[3] XIAO Wenju, YANG Yingpin, WU Zhifeng. Collaborative monitoring of abandoned arable land in cloudy and rainy areas based on multisource remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(2): 39-48.
[4] HE Xiaojun, LUO Jie. Semantic segmentation of high-resolution remote sensing images based on context- and class-aware feature fusion[J]. Remote Sensing for Natural Resources, 2025, 37(2): 1-10.
[5] SHI Junbo, ZHANG Jie, HOU Na, ZHANG Huishan, DING Xiaoping, DU Jianjun, ZHU Haiyang. Application of remote sensing geology in mineral prospecting in the Ke’eryin rare metal ore concentration area in the western Sichuan Basin[J]. Remote Sensing for Natural Resources, 2025, 37(2): 117-127.
[6] PANG Min. An intelligent platform for extracting patches from multisource domestic satellite images and its application[J]. Remote Sensing for Natural Resources, 2025, 37(2): 148-154.
[7] ZHANG Jing, HU Xiaojia, WANG Wei, CHEN Donglei, HUANG Xuhong, YANG Junquan. Comprehensive assessment and analysis of natural resources and ecological conditions in the Zhangbei area[J]. Remote Sensing for Natural Resources, 2025, 37(2): 164-172.
[8] XIE Yijia, YANG Beibei, ZHANG Zhen, CHEN Jia, WANG Zhe, MENG Lingkui. Analysis of the changes in spring phenology of vegetation in Beijing City from 2000 to 2022[J]. Remote Sensing for Natural Resources, 2025, 37(2): 185-193.
[9] NIE Shiyin, LIU Yansong, LI Huiling, XUE Kailun, SHEN Duheng, HE Boyu. Identification and classification of land types of alpine wetlands based on spectral coupling[J]. Remote Sensing for Natural Resources, 2025, 37(2): 204-211.
[10] YU Shuchen, QIU Luo, HE Qiuhua, JIN Xiaoyan, LI Jiabao, YU Deqing. Exploring the spatiotemporal evolution of bottomland in Dongting Lake based on multisource remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(2): 228-234.
[11] DENG Jianming, YAO Hang, FU Bolin, GU Sen, TANG Jie, GAN Yuanyuan. Monitoring the spatiotemporal dynamics of mangrove forests in Beibu Gulf, Guangxi Zhuang Autonomous Region, China, using Google Earth Engine and time-series active and passive remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(2): 235-245.
[12] AO Yong, WANG Ya, WANG Xiaofeng, WU Jingsheng, ZHANG Yiheng, LI Xuejiao. Spatiotemporal changes of ecological quality and their driving factors in Zhengzhou City over the last 20 years[J]. Remote Sensing for Natural Resources, 2025, 37(1): 102-112.
[13] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[14] SHI Haigang, LIANG Chunli, XUE Qing, ZHANG En, ZHANG Xinyi, ZHANG Jianyong, ZHANG Chunlei, CHENG Xu. A study of temperature distribution in the sea area around Qinshan Nuclear Power Plant based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(1): 152-160.
[15] LIU Wenhui, LI Xinye, LI Xiaoyan. Grassland degradation and its response to drought in the western Songnen Plain based on comprehensive remote sensing index[J]. Remote Sensing for Natural Resources, 2025, 37(1): 232-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech