Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 88-95     DOI: 10.6046/zrzyyg.2023349
|
Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning
ZHANG Yiran1(), PAN Bin1(), XU Xia2, ZHU Junfeng3
1. College of Statistics and Data Science, Nankai University, Tianjin 300071, China
2. College of Computer Science, Nankai University, Tianjin 300071, China
3. Autobio Labtec Instruments Co., Ltd., Zhengzhou 450016, China
Download: PDF(2449 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Green tides have emerged as a significant marine ecological disaster worldwide, rendering the accurate detection and area estimation of green algae crucial. To accurately estimate the coverage area of green algae communities in the monitoring of green tides based on low-resolution satellite images, this study proposed a dictionary learning-based method for estimating the area of green algae using hyperspectral images. The proposed method involves deriving the endmember spectrum database that is closest to the unknown surface feature spectra via online robust dictionary learning, obtaining the abundance map of green algae through sparse coding, and calculating the coverage area of green algae. It was verified through the experiment using the spectral images acquired by the geostationary ocean color imager (GOCI) on June 25, 2016, and June 21, 2020. The experimental results reveal that the calculated coverage areas of green algae on the two days were highly close to the approximate measured results, with a minimum error of only 2.15 %, suggesting that the proposed method outperforms traditional index-based hard thresholding algorithms. Independent of the pure pixel hypothesis, the proposed method can effectively address the mixed pixel problem and enhance area estimation accuracy in the absence of a pre-estimated number of endmembers or prior spectral information, thereby achieving high-precision subpixel-level area estimation of green algae.

Keywords hyperspectral image      sparse unmixing      detection of green algae      area estimation      surface feature extraction     
ZTFLH:  TP79  
  P407.8  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yiran ZHANG
Bin PAN
Xia XU
Junfeng ZHU
Cite this article:   
Yiran ZHANG,Bin PAN,Xia XU, et al. Subpixel-level area estimation of green algae based on spectral unmixing in dictionary learning[J]. Remote Sensing for Natural Resources, 2025, 37(2): 88-95.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023349     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/88
Fig.1  Flowchart of DLSU
Fig.2  GF-4 image of the study area
日期 序号 GOCI成像时间 GF-4成像时间
2016-06-25 1 03:28:46 09:08:08
2 04:28:46
2020-06-21 3 05:28:45 13:23:50
4 06:28:45
Tab.1  Information of two sets of semi-synchronous satellite images
Fig.3  False color image of GOCI data
Fig.4  Evaluation for green algae blooms distribution on 25 June, 2016
序号 真值 N-FINDR NDVI VB-FAH IGAG gTV SeCoDe DLSU
0 0.1 0 0.1 0 5 0 0.1
1 1 251.2 3 039.2 8 700.8 4 373.5 5 219.5 234.3 8 700.8 6 258.3 917.1 1 287.1 1 278.1 375.4
2 2 739.0 8 181.5 4 147.3 5 090.8 221.8 8 181.5 6 414.8 398.1 1 170.4 1 047.5 428.3
3 157.6 525.0 2 131.8 874.3 1 481.8 16.5 2 131.8 1 876.0 308.0 678.9 2 077.5 123.4
4 1 754.3 1 917.3 879.8 1 323.5 26.5 1 917.3 1 650.8 194.0 684.7 1 256.5 162.5
Tab.2  Quantative results by different methods ( km2)
[1] 王广策, 王辉, 高山, 等. 绿潮生物学机制研究[J]. 海洋与湖沼, 2020, 51(4):789-808.
[1] Wang G C, Wang H, Gao S, et al. Study on the biological mechanism of green tide[J]. Oceanologia et Limnologia Sinica, 2020, 51(4):789-808.
[2] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2):1-13.
[2] Wang Z L, Fu M Z, Xiao J, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2):1-13.
[3] Hu L, Zeng K, Hu C, et al. On the remote estimation of Ulva prolifera areal coverage and biomass[J]. Remote Sensing of Environment, 2019, 223:194-207.
[4] Hu C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10):2118-2129.
[5] Xing Q, Hu C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data:Application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178:113-126.
[6] 刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5):1-11.
[6] Liu J C, Liu J L, Ding J, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5):1-11.
[7] Hu C, Qi L, Hu L, et al. Mapping Ulva prolifera green tides from space:A revisit on algorithm design and data products[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116:103173.
[8] 赵尊强, 陈鑫, 刘慧芳, 等. 基于改进FCN网络的GOCI绿潮分类研究[J]. 软件导刊, 2020, 19(3):69-73.
[8] Zhao Z Q, Chen X, Liu H F, et al. Greentide classification for GOCI based on improved FCN network[J]. Software Guide, 2020, 19(3):69-73.
[9] 潘斌, 张宁, 史振威, 等. 基于高光谱图像解混的海洋绿藻检测算法[J]. 红外与激光工程, 2018, 47(8):0823001.
[9] Pan B, Zhang N, Shi Z W, et al. Green algae dectection algorithm based on hyperspectral image unmixing[J]. Infrared and Laser Engineering, 2018, 47(8):0823001.
[10] Winter M E. N-FINDR:An algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]// // Spies International Symposium on Optical Science.International Society for Optics and Photonics, 1999.
[11] Xiao Y, Zhang J, Cui T. High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea,China[J]. International Journal of Remote Sensing, 2017, 38(6):1626-1641.
[12] Pan B, Shi Z, An Z, et al. A novel spectral-unmixing-based green algae area estimation method for GOCI data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2):437-449.
[13] Tao X, Cui T, Ren P. Cofactor-based efficient endmember extraction for green algae area estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(6):849-853.
[14] Alba G, Anabella F, Marcelo S C, et al. Multitemporal spectral analysis for algae detection in an eutrophic lake using sentinel 2 images[C]// 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS).March 22-26, Santiago,Chile.IEEE, 2020:351-356.
[15] Thouvenin P A, Dobigeon N, Tourneret J Y. Online unmixing of multitemporal hyperspectral images accounting for spectral variability[J]. IEEE Transactions on Image Processing, 2016, 25(9):3979-3990.
[16] Iordache M D, Plaza A, Bioucas-Dias J. Recent developments in sparse hyperspectral unmixing[C]// 2010 IEEE International Geoscience and Remote Sensing Symposium.July 25-30, Honolulu,HI,USA.IEEE, 2010:1281-1284.
[17] 宋晓瑞, 赵忠文, 于尧. 一种在线字典学习的高光谱图像盲解混方法[J]. 装备学院学报, 2017, 28(3):21-26.
[17] Song X R, Zhao Z W, Yu Y. Blind unmixing of hyperspectral images based on online dictionary learning[J]. Journal of Equipment Academy, 2017, 28(3):21-26.
[18] Lu C, Shi J, Jia J. Online robust dictionary learning[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition.June 23-28,2013, Portland,OR,USA.IEEE, 2013:415-422.
[19] Bioucas-Dias J M, Figueiredo M A T. Alternating direction algorithms for constrained sparse regression:Application to hyperspectral unmixing[C]// 2010 2nd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing. June 14-16,2010, Reykjavik,Iceland.IEEE, 2010:1-4.
[20] Zhao C, Wang X, Cham W K. Background subtraction via robust dictionary learning[J]. EURASIP Journal on Image and Video Processing, 2011, 2011(1):972961.
[21] Wagner A, Wright J, Ganesh A, et al. Toward a practical face recognition system:Robust alignment and illumination by sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2):372-386.
[22] Jin X, Wan J, Hu W, et al. Retrieval of green tide concentration and interannual variation analysis in Yellow Sea based on multi-source remote sensing monitoring[C]// Global Oceans 2020:Singapore - U.S.Gulf Coast. October 5-30,2020, Biloxi,MS,USA.IEEE, 2020:1-5.
[23] 童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报, 2016, 20(5):775-780.
[23] Tong X D. Development of China high-resolution earth observation system[J]. Journal of Remote Sensing, 2016, 20(5):775-780.
[24] 胡昌苗, 白洋, 唐娉. GF-4序列图像的云自动检测[J]. 遥感学报, 2018, 22(1):132-142.
[24] Hu C M, Bai Y, Tang P. Automatic cloud detection for GF-4 series images[J]. Journal of Remote Sensing, 2018, 22(1):132-142.
[25] Qin J, Lee H, Chi J T, et al. Blind hyperspectral unmixing based on graph total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4):3338-3351.
[26] Yao J, Hong D, Xu L, et al. Sparsity-enhanced convolutional decomposition:A novel tensor-based paradigm for blind hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5505014.
[1] HUANG Chuan, LI Yaqin, QI Yueran, WEI Xiaoyan, SHAO Yuanzheng. A hyperspectral unmixing and few-shot classification method based on 3DCAE network[J]. Remote Sensing for Natural Resources, 2025, 37(1): 8-14.
[2] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[3] CAO Delong, LIN Zhen, TANG Tingyuan, LI Chuyu, WANG Xiaorui. Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis[J]. Remote Sensing for Natural Resources, 2023, 35(4): 34-42.
[4] LI Lei, SUN Xiyan, JI Yuanfa, FU Wentao. Hyperspectral image classification based on superpixel segmentation and extended multi-attribute profiles[J]. Remote Sensing for Natural Resources, 2023, 35(4): 114-121.
[5] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[6] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[7] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[8] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[11] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[12] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[13] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[14] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[15] Xiaolu LIAO, Jia LIU, Xingxia ZHOU. Feature extraction and classification of hyperspectral image with ground-sky synchronization test[J]. Remote Sensing for Land & Resources, 2019, 31(3): 65-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech