Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 152-160     DOI: 10.6046/zrzyyg.2023234
|
A study of temperature distribution in the sea area around Qinshan Nuclear Power Plant based on satellite remote sensing
SHI Haigang1,2(), LIANG Chunli1,2(), XUE Qing1,2, ZHANG En1,2, ZHANG Xinyi1,2, ZHANG Jianyong1,2, ZHANG Chunlei1, CHENG Xu1,2
1. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050002, China
2. Hebei Key Laboratory of Airborne Survey and Remote Sensing Technology, Shijiazhuang 050002, China
Download: PDF(5756 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study investigated the temperature distribution in the sea area around the Qinshan Nuclear Power Plant using Landsat thermal infrared remote sensing data. The results indicate a strong correlation between the inversion results of temperature and the measured data, suggesting reliable inversion results. Before the operation of the nuclear power plant, the surrounding sea area exhibited relatively uniform temperature, with no significant temperature difference except for natural warming. Furthermore, the temperature along the coast remained almost unchanged in the north-south direction and displayed slight temperature gradients in the east-west direction, with temperature variation not exceeding 0.6 ℃ within 10 km from the coast. After the operation of the nuclear power, the surrounding sea area showed temperature differentiation. The distribution characteristic of thermal discharge was closely related to tides and seasons. In the same season, the increased amplitude of the temperature during ebb tides generally exceeded that during flood tide. Under the same tidal condition, the increased amplitude of the temperature in summer typically exceeded that in winter. At a certain water intake of the first plant, the surface seawater manifested a temperature rise of over 1.0 ℃ during flood tide. Landsat data generally meet the demand for research on temperature distribution in the surrounding sea area of the Qinshan Nuclear Power Plant, and the distribution of thermal discharge under specific tidal conditions can be investigated using aerial remote sensing monitoring.

Keywords Qinshan Nuclear Power Plant      thermal discharge      temperature inversion      remote sensing monitoring      tide     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haigang SHI
Chunli LIANG
Qing XUE
En ZHANG
Xinyi ZHANG
Jianyong ZHANG
Chunlei ZHANG
Xu CHENG
Cite this article:   
Haigang SHI,Chunli LIANG,Qing XUE, et al. A study of temperature distribution in the sea area around Qinshan Nuclear Power Plant based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(1): 152-160.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023234     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/152
Fig.1  Location of the study area
数据类型 有效载荷 地面幅宽/km 空间分辨率/m 重访周期/d 过境时间及运行工况 季节及潮态
Landsat5 B6 185 120 16 1986-01-23 09:52 未运行
1986-08-19 09:46 未运行
冬季涨潮
夏季落潮
Landsat8 B10 185 100 16 2020-12-22 10:25 9台机组运行
2019-07-29 10:25 9台机组运行
冬季落潮
夏季涨潮
Landsat9 B10 185 100 16 2022-01-02 10:15 9台机组运行
2022-08-14 10:25 9台机组运行
冬季涨潮
夏季落潮
Tab.1  Overview of thermal infrared data of Qinshan nuclear power plant in different time
Fig.2  Distribution of sea surface temperature on Jan. 2, 2022
Fig.3  Linear fitting and residual point map of measured values and inverted SST values at sea on Jan. 2, 2022
Fig.4  Thermal infrared temperature of the sea region near Qinshan nuclear power plant
Fig.5-1  Thermal infrared temperature of the sea region near Qinshan nuclear power plant at different periods
Fig.5-2  Thermal infrared temperature of the sea region near Qinshan nuclear power plant at different periods
时相 温度范围 排水口温度 取水口温度
方家山电厂 一厂 三厂 二厂 一厂及
方家山电厂
三厂 二厂南1 二厂南2
2019-07-29 27.5~35.0 31.7 33.3 33.3 34.8 31.9 29.8 29.8 29.8
2020-12-22 8.5~15.3 14.4 15.3 12.5 12.2 10.5 11.7 10.3 10.1
2022-01-02 8.5~12.0 11.2 11.2 11.9 11.9 10.6 10.2 10.2 10.2
2022-08-14 31.0~38.0 37.8 37.8 37.5 38.0 36.3 33.9 33.8 32.4
Tab.2  Statistics of temperature distribution in the sea area around Qinshan nuclear power plant at different time (℃)
Fig.6  Temperature rise map of the surrounding sea area after the operation of Qinshan nuclear power plant
Fig.7  Contrast chart of temperature rising area at different time
Fig.8  Interpretation of the coastlines changes in Hangzhou Bay at different time
[1] 高宁, 韩瑞, 赵懿珺, 等. 基于减缓温排水热影响的滨海核电排水明渠改造优化研究[J]. 给水排水, 2022, 58(10):109-115.
[1] Gao N, Han R, Zhao Y J, et al. Research on the optimization and modification about the water discharge channel of a coastal NPP based on mitigating the heat effects of its thermal effluent[J]. Water and Wastewater Engineering, 2022, 58(10):109-115.
[2] 刘永叶, 陈晓秋. 核电厂温排水热影响研究的建议[J]. 辐射防护通讯, 2011, 31(6):20-23.
[2] Liu Y Y, Chen X Q. Suggestion of the study on thermal impact of thermal discharge from NPPs[J]. Radiation Protection Bulletin, 2011, 31(6):20-23.
[3] 陈晓秋, 商照荣. 核电厂环境影响审查中的温排水问题[J]. 核安全, 2007, 6(2):46-50.
[3] Chen X Q, Shang Z R. The issue of thermal discharge in reviewing the environmental impacts report for nuclear power plant[J]. Nuclear Safety, 2007, 6(2):46-50.
[4] 张建永, 梁春利, 石海岗, 等. 热红外遥感技术在核电站温排水监测中的应用[J]. 铀矿地质, 2021, 37(3):534-540.
[4] Zhang J Y, Liang C L, Shi H G, et al. Application of thermal infrared remote sensing in monitoring heated water discharge of nuclear power plant[J]. Uranium Geology, 2021, 37 (3):534-540.
[5] 王虎. 基于卫星热红外数据的田湾核电温排水监测[J]. 地理空间信息, 2022, 20(5):48-53.
[5] Wang H. Thermal discharge monitoring of Tianwan nuclear power plant based on satellite thermal infrared data[J]. Geospatial Information, 2022, 20(5):48-53.
[6] 董双发, 范晓, 石海岗, 等. 基于Landsat8和无人机的福清核电温排水分布研究[J]. 自然资源遥感, 2022, 34(3):112-120.doi:10.6049/zrzyyg.2021258.
[6] Dong S F, Fan X, Shi H G, et al. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34 (3):112-120.doi:10.6049/zrzyyg.2021258.
[7] 秦山核电厂扩建项目(方家山核电工程)温排水数模计算和分析报告[R]. 浙江省水利河口研究院, 2014.
[7] Thermal discharge enumerical simulation calculation and analysis report of Qinshan nuclear power plant expansion project (Fangjia-shan nuclear power project)[R].Zhejiang Institute of Hydraulics and Estuary, 2014.
[8] Barsi J A, Barker J L, Schott J R. An atmospheric correction para-meter calculator for a single thermal band earth-sensing instrument[C]// IGARSS 2003—2003 IEEE International Geoscience and Remote Sensing Symposium. IEEE,2005: 3014-3016.
[9] Barsi J A, Schott J R, Palluconi F D, et al. Validation of a web-based atmospheric correction tool for single thermal band instruments[C]. Earth Observing Systems X, 2005,5882: 1-6.
[10] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research:Atmospheres, 2003, 108(D22):4688.
[11] Qin Z H, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746.
[12] 覃志豪, Zhang M H, Karnieli A, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4): 456-466.
doi: 10.11821/xb200104009
[12] Qin Z H, Zhang M H, Karnieli A, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J]. Acta Geographica Sinica, 2001, 56(4):456-466.
doi: 10.11821/xb200104009
[13] 涂梨平, 周斌. 利用Landsat/TM热红外数据进行陆面温度反演的比较[J]. 科技通报, 2007, 23(3):326-331.
[13] Tu L P, Zhou B. A comparative study of algorithms for estimating land surface temperature from Landsat/TM data[J]. Bulletin of Science and Technology, 2007, 23(3):326-331.
[14] 陈望. 温排水效应对秦山核电厂1号机组的影响及应对措施[J]. 中国核电, 2021, 14(1):114-119.
[14] Chen W. Influence of warm water discharge on Qinshan nuclear power plant and its countermeasures[J]. China Nuclear Power, 2021, 14(1):114-119.
[15] 王冠琳, 熊学军. 田湾海域温排水分布及变化规律分析[J]. 海洋科学进展, 2013, 31(1):69-74.
[15] Wang G L, Xiong X J. Distribution and variation of warm water discharge in the coastal area of Tianwan[J]. Advances in Marine Science, 2013, 31(1):69-74.
[16] 朱利, 王桥, 吴传庆, 等. 温排水遥感监测原理与示范[M]. 北京: 中国环境出版社,2016:147-154.
[16] Zhu L, Wang Q, Wu C Q, et al. Principle and application of thermal discharge monitoring using remote sensing[M]. Beijing: China Environmental Science Press,2016:147-154.
[17] 石海岗, 梁春利, 张建永, 等. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2):196-203.doi:10.6049/gtzyyg.2020.02.25.
[17] Shi H G, Liang C L, Zhang J Y, et al. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vi-cinity of Tianwan nuclear power station[J]. Remote Sensing for Land and Resources, 2020, 32(2):196-203.doi:10.6049/gtzyyg.2020.02.25.
[18] 黄赛花, 章琪宇, 严军, 等. 杭州湾围垦工程引起的岸线变化对水环境的影响分析[J]. 华北水利水电大学学报(自然科学版), 2021, 42(2):32-41.
[18] Huang S H, Zhang Q Y, Yan J, et al. Impact of shoreline changes caused by Hangzhou Bay reclamation project on water environment[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2021, 42(2):32-41.
[19] 王力彦, 邢喆, 侯辰, 等. 1990—2017年杭州湾大陆岸线时空变迁分析[J]. 海洋通报, 2020, 39(4):481-487.
[19] Wang L Y, Xing Z, Hou C, et al. The spatio-temporal change ana-lysis of mainland coastline in Hangzhou Bay from 1990 to 2017[J]. Marine Science Bulletin, 2020, 39(4):481-487.
[20] 贺佳惠, 梁春利, 李名松. 核电站近岸温度场航空热红外遥感测量数据处理研究[J]. 国土资源遥感, 2010, 22(3):51-53.doi:10.6046/gtzyyg.2010.03.11.
[20] He J H, Liang C L, Li M S. Temperature field airborne thermal remote sensing survey of the alongshore nuclear power station[J]. Remote Sensing for Land and Resources, 2010, 22(3):51-53.doi:10.6046/gtzyyg.2010.03.11.
[21] 王祥, 王新新, 苏岫, 等. 无人机平台航空遥感监测核电站温排水——以辽宁省红沿河核电站为例[J]. 国土资源遥感, 2018, 30(4):182-186.doi:10.6046/gtzyyg.2018.04.27.
[21] Wang X, Wang X X, Su X, et al. Thermal discharge monitoring of nuclear power plant with aerial remote sensing technology using a UAV platform:Take Hongyanhe nuclear power plant,Liaoning Province,as example[J]. Remote Sensing for Land and Resources, 2018, 30(4):182-186.doi:10.6046/gtzyyg.2018.04.27.
[1] KANG Hui, DOU Wenzhang, HAN Lingyi, DING Ziyue, WU Liangting, HOU Lu. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model[J]. Remote Sensing for Natural Resources, 2024, 36(4): 117-123.
[2] YE Lijuan, DUAN Xiaolong, LI Ting, ZHANG Jing, ZHANG Yun, CHEN Donglei. Distribution and rehabilitation status of lands destroyed by mining: A case study of Hebei Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 75-81.
[3] HE Haixia, LI Bo. Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022[J]. Remote Sensing for Natural Resources, 2024, 36(2): 135-141.
[4] XING Yu, WANG Jingya, YANG Jinzhong, CHEN Dong, DU Xiaomin, GUO Jingkai, SONG Licong. Distributions and existing problems of mining land of abandoned open-pit mines in China[J]. Remote Sensing for Natural Resources, 2024, 36(2): 21-26.
[5] MA Xiaoxue, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei, ZHAO Danning, YAN Chi, NI Xuan. Application of integrated remote sensing monitoring technology for geological hazards in major engineering construction:A case study of the Yanqing competition area of the Beijing 2022 Olympic Winter Games[J]. Remote Sensing for Natural Resources, 2024, 36(2): 248-256.
[6] ZHOU Xiaojia. Application of remote sensing monitoring in abandoned arable land in a hilly region[J]. Remote Sensing for Natural Resources, 2024, 36(1): 235-241.
[7] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[8] LI Xingyou, ZHANG Fei, WANG Zheng. Present situation and development trend in building remote sensing monitoring models of soil salinization[J]. Remote Sensing for Natural Resources, 2022, 34(4): 11-21.
[9] WANG Juan, WANG Zhihong, ZHANG Jianguo, CHU Na, LI Si, YIN Zhan. Remote sensing monitoring and impact intensity assessment of human activities in Henan national nature reserves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 235-242.
[10] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[11] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[12] TONG Jing, YANG Jinzhong, DU Xin, DU Xiaomin, LI Chunbo, AN Na. Remote sensing-based monitoring of the treatment and redevelopment of the brownfields: A case study of brownfields in the risk control and rehabilitation list of Zhejiang Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 235-239.
[13] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[14] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[15] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech