Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 128-137     DOI: 10.6046/zrzyyg.2024346
|
Deformation monitoring using time-series InSAR with dual-polarization optimization
XUAN Jiabin1(), LI Ruren1, FU Wenxue2,3()
1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
3. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
Download: PDF(6574 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The spatial density and interferometric phase quality of high-quality monitoring points serve as key indicators for deformation monitoring using the time-series interferometric synthetic aperture radar (InSAR) technique. To further enhance the deformation monitoring ability of the InSAR technique for non-urban areas, this study proposed a polarization time-series InSAR method that takes into account distributed scatterers (DSs) using dual-polarization images from Sentinel-1. Specifically, polarization processing of the intensity and phase information of time-series SAR data was conducted using various methods based on the characteristics of DSs and taking the dispersion of amplitude (DA) as an indicator for the phase quality assessment. Then, surface deformation monitoring was performed using the data before and after optimization. This study carried out experiments on Ningbo City in Zhejiang Province using 40 scenes of dual-polarization (VV-VH) images from Sentinel-1. The results indicate that the proposed method can significantly increase the density of monitoring points and the interferometric phase quality. Compared to single polarization, the proposed method increased the quantities of persistent scatterers (PSs) and DSs by about 20% and 57.5%, respectively. Furthermore, the interferometric phase quality was also significantly improved, with the average coherence increasing by more than 15%. The proposed method allows for a more detailed reflection of regional deformations.

Keywords polarization time-series InSAR technique      dual-polarization images from Sentinel-1      deformation monitoring of complex terrain     
ZTFLH:  TP79  
  P237  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiabin XUAN
Ruren LI
Wenxue FU
Cite this article:   
Jiabin XUAN,Ruren LI,Wenxue FU. Deformation monitoring using time-series InSAR with dual-polarization optimization[J]. Remote Sensing for Natural Resources, 2025, 37(6): 128-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024346     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/128
Fig.1  Topographic map of study area
Fig.2  Land cover classification and satellite image map of the study area
Fig.3  Processing flow of dual-polarization time-series InSAR deformation monitoring
Fig.4  Search results of polarization space parameters of SAR pixels
Fig.5  Convergence analysis of the PSO algorithm
Fig.6  Plot of average intensity for different polarisation models
Fig.7  Comparison of the number of PS points in 2 typical areas
方法 指标范围
0~0.2 0~0.3 0~0.4 0~0.5
VV 1 969 10 797 35 874 92 982
OPT 2 592 13 573 42 976 107 726
(OPT-VV)/VV (↑) 31.6% 25.7% 19.8% 15.9%
Tab.1  Number of PS points selected under different thresholds
Fig.8  Comparison of the number of identified homogeneous pixels
Fig.9  Comparison diagram of DS point identification distribution
Fig.10  Comparison of local area interferograms before and after optimization
干涉图 长时间基线(20230103—20220201) 短时间基线(20230103—20221128)
RPN SPD COH RPN SPD COH
VV 925 008 6.2e+07 0. 289 872 105 6.5e+07 0. 322
OPT 822 700
(11.1%↓)
5.9e+07
(4.9%↓)
0. 322
(11.4%↑)
754 483
(13.5%↓)
6.1e+07
(6.2%↓)
0. 371
(15.2%↑)
Tab.2  Interferogram quality evaluation results
Fig.11  Surface deformation rate map of the study area
[1] Zhu C H, Wang C S, Zhang B C, et al. Differential interferometric synthetic aperture radar data for more accurate earthquake catalogs[J]. Remote Sensing of Environment, 2021,266:112690.
[2] Cigna F, Tapete D. Present-day land subsidence rates,surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR[J]. Remote Sensing of Environment, 2021,253:112161.
[3] Liu Y F, Yang H L, Wang S Z, et al. Monitoring and stability analy-sis of the deformation in the woda landslide area in Tibet,China by the DS-InSAR method[J]. Remote Sensing, 2022, 14(3):532.
doi: 10.3390/rs14030532 url: https://www.mdpi.com/2072-4292/14/3/532
[4] Zhao F, Wang T, Zhang L X, et al. Polarimetric persistent scatterer interferometry for ground deformation monitoring with VV-VH sentinel-1 data[J]. Remote Sensing, 2022, 14(2):309.
doi: 10.3390/rs14020309 url: https://www.mdpi.com/2072-4292/14/2/309
[5] Blanco-Sánchez P, Mallorquí J J, Duque S, et al. The coherent pixels technique (CPT):An advanced DInSAR technique for nonlinear deformation monitoring[J]. Pure and Applied Geophysics, 2008, 165(6):1167-1193.
doi: 10.1007/s00024-008-0352-6 url: http://link.springer.com/10.1007/s00024-008-0352-6
[6] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[C]// Proceedings of SAR Image Analysis,Modeling,and Techniques II. SPIE-International Society for Optical Engineering, 1999:132-139.
[7] 安炳琪, 罗海滨, 丁海勇, 等. 基于SBAS-InSAR技术的西宁地表形变监测[J]. 遥感技术与应用, 2021, 36(4) :838-846.
doi: 10.11873/j.issn.1004-0323.2021.4.0838
[7] An B Q, Luo H B, Ding H Y, et al. Monitoring of surface deformation in Xining based on SBAS-InSAR[J]. Remote Sensing Technology and Application, 2021, 36(4):838-846.
[8] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878 url: http://ieeexplore.ieee.org/document/868878/
[9] Zhang L, Lu Z, Ding X L, et al. Mapping ground surface deformation using temporarily coherent point SAR interferometry:Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012,117:429-439.
[10] Fan H D, Gao X X, Yang J K, et al. Monitoring mining subsidence using a combination of phase-stacking and offset-tracking methods[J]. Remote Sensing, 2015, 7(7):9166-9183.
doi: 10.3390/rs70709166 url: https://www.mdpi.com/2072-4292/7/7/9166
[11] 何倩. 联合PS和DS的时序InSAR地表沉降监测方法研究[D]. 徐州: 中国矿业大学, 2022.
[11] He Q. Study on time-series InSAR method for monitoring surface subsidence with persistent and distributed scatterers[D]. Xuzhou: China University of Mining and Technology, 2022.
[12] Huang J L, Bai Y, Lei S G, et al. Time-series SBAS pixel offset tracking method for monitoring three-dimensional deformation in a mining area[J]. IEEE Access, 2020,8:118787-118798.
[13] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12):2039-2049.
[13] Zhang L, Liao M S, Dong J, et al. Early detection of landslide hazards in mountainous areas of West China using time series SAR interferometry—a case study of Danba,Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049.
[14] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
doi: 10.1109/TGRS.2011.2124465 url: http://ieeexplore.ieee.org/document/5765671/
[15] 赵立峰. 基于DS-InSAR的矿区地表形变监测方法研究——以沛北矿区为例[D]. 徐州: 中国矿业大学, 2022.
[15] Zhao L F. Study on surface deformation monitoring method based on DS-InSAR in mining area[D]. Xuzhou: China University of Mining and Technology, 2022.
[16] Goel K, Adam N. A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5454-5468.
doi: 10.1109/TGRS.2013.2289370 url: http://ieeexplore.ieee.org/document/6679273/
[17] Li T T, Zhang H Z, Fan H D, et al. Position inversion of goafs in deep coal seams based on DS-InSAR data and the probability integral methods[J]. Remote Sensing, 2021, 13(15):2898.
doi: 10.3390/rs13152898 url: https://www.mdpi.com/2072-4292/13/15/2898
[18] Chen B Q, Yang J L, Li Z H, et al. A new sequential homogeneous pixel selection algorithm for distributed scatterer InSAR[J]. GIScience & Remote Sensing, 2023, 60(1):31.
[19] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5):1551-1565.
doi: 10.1109/36.718859 url: http://ieeexplore.ieee.org/document/718859/
[20] Pipia L, Fabregas X, Aguasca A, et al. Polarimetric differential SAR interferometry:First results with ground-based measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):167-171.
doi: 10.1109/LGRS.2008.2009007 url: http://ieeexplore.ieee.org/document/4729620/
[21] 赵峰, 张雷昕, 王腾, 等. 城市地表形变的双极化Sentinel-1数据极化时序InSAR技术监测[J]. 武汉大学学报(信息科学版), 2022, 47(9):1507-1514.
[21] Zhao F, Zhang L X, Wang T, et al. Polarimetric persistent scatterer interferometry for urban ground deformation monitoring with sentinel-1 dual polarimetric data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9):1507-1514.
[22] Iglesias R, Fabregas X, Aguasca A. A new technique for Atmospheric Phase Screen(APS) compensation based on a 2D MultiplernRegression Model in Ground-Based SAR[C]// 9th European Conference on Synthetic Aperture Radar.Nuremberg,Germany:VDE Verlag GMBH, 2012:12-15.
[23] 冯瀚, 赵峰, 汪云甲, 等. 双极化Sentinel-1数据极化时序InSAR技术地表形变监测——以上海市浦东机场为例[J]. 遥感学报, 2022, 26(12):2531-2541.
[23] Feng H, Zhao F, Wang Y J, et al. Dual-polarization Sentinel-1 data polarization time series InSAR technology surface deformation monitoring—Taking Shanghai Pudong airport as an example[J]. National Remote Sensing Bulletin, 2022, 26(12):2531-2541.
doi: 10.11834/jrs.20210423 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20210423/
[24] Navarro-Sanchez V D, Lopez-Sanchez J M, Vicente-Guijalba F. A contribution of polarimetry to satellite differential SAR interferometry:Increasing the number of pixel candidates[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2):276-280.
doi: 10.1109/LGRS.2009.2033013 url: http://ieeexplore.ieee.org/document/5299098/
[25] Iglesias R, Monells D, Fabregas X, et al. Phase quality optimization in polarimetric differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2875-2888.
doi: 10.1109/TGRS.2013.2267095 url: https://ieeexplore.ieee.org/document/6553165/
[26] Iglesias R, Monells D, López-Martínez C, et al. Polarimetric optimization of temporal sublook coherence for DInSAR applications[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):87-91.
doi: 10.1109/LGRS.2014.2326684 url: http://ieeexplore.ieee.org/document/6827179/
[27] 赵峰. 面向PSI技术的高质量SAR像元识别与干涉相位极化优化方法研究[J]. 地理与地理信息科学, 2020, 36(3):141.
[27] Zhao F. Advanced pixel selection and optimization algorithms for persistent scatterer interferometry (PSI)[J]. Geography and Geo-Information Science, 2020, 36(3):141.
[28] Navarro-Sanchez V D, Lopez-Sanchez J M. Improvement of persistent-scatterer interferometry performance by means of a polarimetric optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):609-613.
doi: 10.1109/LGRS.2011.2176715 url: http://ieeexplore.ieee.org/document/6119193/
[29] 桂阳归, 汪长城, 卢丽君, 等. 顾及极化最优的时序双极化InSAR形变监测方法[J]. 测绘科学, 2021, 46(12):75-82.
[29] Gui Y G, Wang C C, Lu L J, et al. A time-series dual-polarization InSAR method based on polarimetric optimization for monitoring deformation[J]. Science of Surveying and Mapping, 2021, 46(12):75-82.
[30] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603.
doi: 10.6038/cjg20161007
[30] Jiang M, Ding X L, He X F, et al. FaSHPS-InSAR technique for distributed scatterers:A case study over the lost hills oil field,California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603.
[31] 蒋弥, 丁晓利, 李志伟. 时序InSAR同质样本选取算法研究[J]. 地球物理学报, 2018, 61(12):4767-4776.
doi: 10.6038/cjg2018L0490
[31] Jiang M, Ding X L, Li Z W. Homogeneous pixel selection algorithm for multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12):4767-4776.
[32] Jiang M, Yong B, Tian X, et al. The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,126:120-128.
[33] 方海伦, 胡荣荣, 邱雨欣. 基于PS-InSAR技术的宁波市地面沉降监测研究[J]. 地质灾害与环境保护, 2023, 34(4):50-55.
[33] Fang H L, Hu R R, Qiu Y X. Study on land subsidence monitoring basing on ps-insar technique[J]. Journal of Geological Hazards and Environment Preservation, 2023, 34(4):50-55.
[34] Azadnejad S, Maghsoudi Y, Perissin D. Evaluation of polarimetric capabilities of dual polarized Sentinel-1 and TerraSAR-X data to improve the PSInSAR algorithm using amplitude dispersion index optimization[J]. International Journal of Applied Earth Observation and Geoinformation, 2020,84:101950.
[35] Iglesias R, Mallorqui J J, López-Dekker P. DInSAR pixel selection based on sublook spectral correlation along time[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):3788-3799.
doi: 10.1109/TGRS.2013.2276023 url: http://ieeexplore.ieee.org/document/6620942/
[36] 温浩, 高峰, 胡在凰, 等. 地面沉降InSAR监测数据融合方法——以宁波市为例[J]. 测绘通报, 2024(s2):12-16.
[36] Wen H, Gao F, Hu Z H, et al. Data fusion method of ground subsidence InSAR monitoring—a case study of Ningbo City[J]. Bulletin of Surveying and Mapping, 2024(s2):12-16.
[37] 马张烽, 蒋弥, 李桂华, 等. 空间网络对时序InSAR相位解缠的影响——以Delaunay与Dijkstra网络为例[J]. 测绘学报, 2022, 51(2):248-257.
doi: 10.11947/j.AGCS.2022.20200469
[37] Ma Z F, Jiang M, Li G H, et al. Effects of spatial network on time series InSAR phase unwrapping:Take the Delaunay and Dijkstra networks for example[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(2):248-257.
[1] LIU Yufu, BAI Yuqi. Meteorological data-sharing system of the World Meteorological Organization[J]. Remote Sensing for Natural Resources, 2025, 37(6): 1-9.
[2] LIU Yufu, BAI Yuqi. Global sharing system of Earth simulation data in the Coupled Model Intercomparison Project[J]. Remote Sensing for Natural Resources, 2025, 37(6): 10-21.
[3] ZHANG Jinhua, HU Zhongwen, ZHANG Yinghui, ZHANG Qian, WANG Jingzhe, WU Guofeng. Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 107-117.
[4] GE Lihua, WANG Peng, ZHANG Yanqin, ZHAO Shuanglin. Deep forest-based model for detecting changes in remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(6): 118-127.
[5] DENG Yuxi, LI Jiatian, LIU Jiayin, LUO Xin, YANG Tao. A remote sensing image matching network combining a large selective kernel-enhanced convolution module[J]. Remote Sensing for Natural Resources, 2025, 37(6): 138-147.
[6] LI Kaixuan, LIU Junwei, WANG Zhibo, JIANG Wenlong, CAI Hanlin, LEI Shaogang, YANG Yongjun. Extracting information on benches in open-pit coal mines based on Sentinel-2 images and the BenchSegNet model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 148-155.
[7] YU Bing, ZHANG Chunyu, WANG Jinri, LIU Guoxiang, DAI Keren, MA Deying. SBAS-InSAR-based long time-series deformation monitoring and landslide hazard identification in the Baihetan reservoir area[J]. Remote Sensing for Natural Resources, 2025, 37(6): 156-168.
[8] SUN Yinsuo, FANG Xiao, ZHOU Dongmao, XUE Hongwen, SU Junwu. Exploring the spatiotemporal differentiation and driving factors of vegetation dynamics in the Loess Plateau using the optimal parameter-based geographical detector model[J]. Remote Sensing for Natural Resources, 2025, 37(6): 169-181.
[9] LIU Jinyu, HU Jinshan, KANG Jianrong, ZHU Yihu, WANG Shengli. Remote sensing-based assessment of ecological quality in open-pit coal mining areas based on the pressure-state-response and time series prediction models[J]. Remote Sensing for Natural Resources, 2025, 37(6): 182-190.
[10] ZHANG Yiwen, LI Fengxia, ZHANG Rui, FENG Xiaogang, LI Meng, HU Moqing. Spatiotemporal evolution and trade-off/synergy analysis of ecosystem services in the Xi’an section of the Qinling Mountains[J]. Remote Sensing for Natural Resources, 2025, 37(6): 191-200.
[11] ZHANG Ying, CHEN Yunchun, GUO Xiaofei, WU Xiaocong, CHEN Fenglin, ZENG Weijun. Fine-scale information extraction of water bodies in the Erhai Lake Basin based on an improved DeepLabV3plus architecture[J]. Remote Sensing for Natural Resources, 2025, 37(6): 201-210.
[12] WANG Zimeng, LIAO Yuanhong, LOU Shuhan, BAI Yuqi. A comparative study of the methods for delineating wildland-urban interfaces: A case study of Wood Buffalo, Alberta, Canada[J]. Remote Sensing for Natural Resources, 2025, 37(6): 211-218.
[13] SHI Xiaochen, LUO Chenying, ZHANG Chao, WANG Wei, CHEN Chang, BAI Xuechuan, LI Shaoshuai. Ecological protection assessment of cultivated land in the black soil region based on remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 219-227.
[14] ZANG Mingrun, LIAO Yuanhong, CHEN Zhou, BAI Yuqi. Analysis and summary of land cover classification systems[J]. Remote Sensing for Natural Resources, 2025, 37(6): 22-40.
[15] LI Chunyi, ZHAO Pengxiang, DING Laizhong, WANG Wenjie, GAO Yantao, MAI Zhiyao, GUO Yaxing. Deep learning-based remote sensing interpretation and its reliability verification for hydroxyl alteration information in the East Qinling Mountains[J]. Remote Sensing for Natural Resources, 2025, 37(6): 228-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech