Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (2) : 42-46     DOI: 10.6046/gtzyyg.2013.02.08
|
Tideland height measurement based on UAV remote sensing and tidal observation
TANG Yuanbin, LIU Wen, REN Shaohua
Zhejiang Surveying Institute of Estuary and Coast, Hangzhou 310008, China
Download: PDF(882 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The coastal terrain of Zhejiang is complex. It is impossible to use the traditional way to measure the tideland heights of many beaches or offshore islands. With UAV remote sensing technology and tidal observation, the tideland height can be measured, and the difficult problems of artificial measurement can be solved, thus greatly improving the efficiency. Firstly, in combination with existing data, the aerial region and tide information are determined.Secondly,the UAV aerial operations and tidal observations are implemented outside synchronization. Finally, the boundary between tide and coast are interpreted and drawn with high-precision remote sensing image data (DOM), the tidal observation data are interpolated to update tideland height. The results show that this technology can quantitatively describe the tideland height information and is hence a new method of tideland height measurement.
Keywords microwave remote sensing      ANFIS method      bare region      soil moisture      inversion model     
:  P208  
  P231  
Issue Date: 28 April 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ling
JIANG Jinbao
CUI Ximin
CAI Qingkong
Cite this article:   
ZHANG Ling,JIANG Jinbao,CUI Ximin, et al. Tideland height measurement based on UAV remote sensing and tidal observation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 42-46.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.02.08     OR     https://www.gtzyyg.com/EN/Y2013/V25/I2/42
[1] 国家质量技术监督局.GB12327-1998,海道测量规范[S].北京:中国标准出版社,1998. General administration of quality supervision of People’s Republic of China.GB 12327-1998,specifications for hydrographic survey[S].Beijing:China Biaozhun Publishing House,1998.
[2] 范承啸,韩俊,熊志军,等.无人机遥感技术现状与应用[J].测绘科学,2009,34(5):214-215. Fan C X,Han J,Xiong Z J,et al.Application and status of unmanned aerial vehicle remote sensing technology[J].Science of Surveying and Mapping,2009,34(5):214-215.
[3] 曾涛,杨武年,简季.无人机低空遥感影像处理在汶川地震地质灾害信息快速勘测中的应用[J].测绘科学,2009,34(s2):64-65. Zeng T,Yang W N,Jian J.Applications of remote sensing images processing of unmanned air vehicle on the low attitude in quick acquirement of geological disasters information in Wenchuan earthquake[J].Science of Surveying and Mapping,2009,34(s2):64-65.
[4] 沈永林,刘军,吴立新,等.基于无人机影像和飞控数据的灾场重建方法研究[J].地理与地理信息科学,2011,27(6):13-17. Shen Y L,Liu J,Wu L X,et al.Reconstruction of disaster scene from UAV images and flight-control data[J].Geography and Geo-information Science,2011,27(6):13-17.
[5] 王峰,吴云东.无人机遥感平台技术研究与应用[J].遥感信息,2010(2):114-118. Wang F,Wu Y D.Research and application of UAS borne remote sensing[J].Remote Sensing Information,2010(2):114-118.
[6] 鲁恒,李永树,何敬,等.无人机低空遥感影像数据的获取与处理[J].测绘工程,2011,20(1):51-54. Lu H,Li Y S,He J,et al.Capture and processing of low altitude remote sensing images by UAV[J].Engineering of Surveying and Mapping,2011,20(1):51-54.
[7] 廖永生,陈文森.无人机低空数字摄影测量参数计算和路线设计系统[J].测绘通报,2011(9):38-41. Liao Y S,Chen W S.The parameters calculating and environment simulating system of UAV low-altitude photogrammetry operating[J].Bulletin of Surveying and Mapping,2011(9):38-41.
[8] 鲁恒,李永树,林先成.无人机高空间分辨率影像分类研究[J].测绘科学,2011,36(6):106-108. Lu H,Li Y S,Lin X C.Classification of high resolution imagery by unmanned aerial vehicle[J].Science of Surveying and Mapping,2011,36(6):106-108.
[9] 何敬,李永树,鲁恒,等.无人机影像的质量评定及几何处理研究[J].测绘通报,2010(4):22-24. He J,Li Y S,Lu H,et al.Research of UAV image quality evaluation and geometry processing[J].Bulletin of Surveying and Mapping,2010(4):22-24.
[10] 何敬,李永树,鲁恒,等.无人机影像地图制作实验研究[J].国土资源遥感,2011,23(4):74-77. He J,Li Y S,Lu H,et al.Research on producing image maps based on UAV imagery data[J].Remote Sensing for Land and Resources,2011,23(4):74-77.
[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[3] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[4] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[7] Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO. Error analysis of soil moisture based on Triple Collocation method[J]. Remote Sensing for Land & Resources, 2018, 30(3): 68-75.
[8] Jun LI, Heng DONG, Xiang WANG, Lin YOU. Reconstructing missing data in soil moisture content derived from remote sensing based on optimum interpolation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 45-52.
[9] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[10] WU Ying, QIAN Bo, WANG Zhenhui. Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 176-181.
[11] ZHAO Feifei, BAO Nisha, WU Lixin, SUN Rui. Retrieving land surface temperature and soil moisture from HJ-1B data: A case study of Yimin open-cast coal mine region in Hulunbeier grassland[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 1-9.
[12] LI Wei, CHEN Xiuwan, PENG Xuefeng, XIAO Han. GNSS-R technique for soil moisture estimation: Framework and software implementation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 213-220.
[13] LI Li, WANG Di, PAN Caixia, NIU Huanna. Active microwave scattering models used in soil moisture retrieval[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 1-9.
[14] HU Danjuan, JIANG Jinbao, CHEN Xuhui, LI Jing. Comparison of bared soil moisture inversion models based on improved BP neural network[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 72-77.
[15] BAI Shuying, WU Qi, SHI Jianqiao, GU Haimin. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 171-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech