Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (1) : 25-30     DOI: 10.6046/gtzyyg.2014.01.05
Technology and Methodology |
Feasibility analysis of shortwave infrared band for recognition of high temperature target
YU Yifan, PAN Jun, XING Lixin, JIANG Lijun, MENG Tao, HAN Xiaojing, ZHOU Caicai
College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
Download: PDF(996 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, high temperature target recognition mainly uses thermal infrared remote sensing data. In this study, the authors have found that shortwave infrared band has better recognition capability than thermal infrared band. In the mixed pixel of high temperature targets,temperature and area of high temperature objects are unknown. They are the key parameters that can determine the spectral character of mixed pixels. Based on the constant energy principle,the authors formulated the radiation energy equation for the mixed pixel of high temperature targets on the Earth's surface. The results of the sensibility analysis for the equation parameters show that the area percentage of high temperature targets and the reflection of the normal temperature targets are most sensitive to the invertion of the temperature and the area of high temperature targets. ETM+ 7 data obtained in Baode of Shanxi and Fugu of Shaanxi were used for study of high temperature target recognition. The radiation flux density of the recognized fire is about 1.36 to 4.76 times that of the background value. Field verification shows that Mahalanobis method has the precision of 88%,suggesting that shortwave infrared band can be used to recognize high temperature targets.

Keywords hyperspectral remote sensing      FastICA      feature extraction     
:  TP75  
Issue Date: 08 January 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHANG Ruichun
WANG Lu
WANG Maozhi
Cite this article:   
CHANG Ruichun,WANG Lu,WANG Maozhi. Feasibility analysis of shortwave infrared band for recognition of high temperature target[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 25-30.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.01.05     OR     https://www.gtzyyg.com/EN/Y2014/V26/I1/25

[1] 肖霞.基于类间方差的MODIS森林火灾监测方法研究[D].合肥:中国科学技术大学, 2010. Xiao X.The study of an improved method for forest fire detection based on variance between-class[D].Hefei:University of Science and Technology of China, 2010.

[2] 赵彬, 赵文吉, 潘军, 等.NOAA-AVHRR数据在吉林省东部林火信息提取中的应用[J].国土资源遥感, 2010(1):77-80. Zhao B, Zhao W J, Pan J, et al.The application of NOAA-AVHRR to forest fire detection in eastern Jilin Province[J].Remote Sensing for Land and Resources, 2010(1):77-80.

[3] 刘安涛.地表热异常遥感温度反演[D].长春:吉林大学, 2007. Liu A T.Land surface temperature retrieval of the hot abnormity on remote sensing[D].Changchun:Jilin University, 2007.

[4] 朱亚静, 邢立新, 潘军, 等.短波红外遥感高温地物目标识别方法研究[J].遥感信息, 2011(6):33-36, 41. Zhu Y J, Xing L X, Pan J, et al.Method of identifying high-temperature target using shortwave infrared remote sensing data[J].Remote Sensing Information, 2011(6):33-36, 41.

[5] Barducci A, Guzzi D, Marcoionni P, et al.Comparison of fire temperature retrieved from SWIR and TIR hyperspectral data[J].Infrared Physics and Technology, 2004, 46(1/2):1-9.

[6] Matheson P S, Malheson D S.Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data[J].Remote Sensing of Environment, 2011, 115(3):876-886.

[7] 冯钟葵.关于地物辐射值的计算问题[J].中国遥感卫星地面站:用户简讯, 2002(49):1. Feng Z K.Estimation problem about the surface features radiation value[J].Remote Sensing Satellite Earth Station of China:User News Brief, 2002(49):1.

[8] Chen F L, Zhuang J L, Xu X R, et al.The concept of effective emissivity of nonisothermal mixed pixel and its test[J].Chinese Science Bulletin, 2000, 45(9):788-795.

[9] Berk A, Anderson G P, Acharya P K, et al.Modtran4 user's manual[M].Air Force Research Laboratory, 1991:11-53.

[10] Pan J, Xing L X, Wen J C, et al.Inversion method study on short wave infrared remote sensing data high temperature surface feature temperature[C]//Processing of the 2nd International Congress on Image and Signa Processing, Tainijin:IEEE, 2009:1-4.

[11] 刘诚, 李亚军, 赵长海, 等.气象卫星亚像元火点面积和亮温估算方法[J].应用气象学报, 2004, 15(3):273-280. Liu C, Li Y J, Zhao C H, et al.The method of evaluating sub-pixel size and temperature of fire spot in AVHRR data[J].Journal of Applied Meteorolgical Science, 2004, 15(3):273-280.

[12] 孔祥生, 苗放, 刘鸿福, 等.遥感技术在监测和评价土法炼焦污染源中的应用[J].成都理工大学学报:自然科学版, 2005, 32(1):92-96. Kong X S, Miao F, Liu H F, et al.Application research of remote sensing technique in monitoring pollution source by digenous coke-production[J].Journal of Chengdu University of Technology:Science and Technology Edition, 2005, 32(1):92-96.

[13] 纪宏金.地球化学背景与异常划分的多元方法[J].长春地质学院学报, 1988, 18(3):311-320. Ji H J.Multivariate method for distinguishing geochemical background from geochemical anomalies[J].Journal of Changchun University of Earth Science, 1988, 18(3):311-320.

[14] 纪宏金.多元正态总体假设检验在矿化带识别中的应用[J].长春地质学院学报, 1991, 21(3):321-326. Ji H J.An application of test of hypothesis of mulitivariate normal population to mineralization zone recogniztion[J]. Journal of Changchun University of Earth Science, 1991, 21(3):321-326.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[4] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[5] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[6] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[7] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[8] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[9] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[10] Xinghang ZHANG, Lin ZHU, Wei WANG, Lishan MENG, Xiaojuan LI, Yingchao REN. Study and application of sequential extraction method of ground fissures based on object[J]. Remote Sensing for Land & Resources, 2019, 31(1): 87-94.
[11] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
[12] Jing CUI, Xinfeng DONG, Rui DING, Shimin ZHANG, Conghe WANG, Hengxin LU, Yanyun SUN. Stratigraphic division of loess along loess profile based on hyperspectral remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 202-207.
[13] WEI Yingjuan, ZHENG Xiongwei, LEI Bing, GAN Yuhang. Realization of clouds automatic extraction of GF-1 remote sensing image based on sample model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 39-45.
[14] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
[15] SU Hongjun, LIU Hao. A novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech