Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 98-103     DOI: 10.6046/gtzyyg.2017.03.14
|
Radiance image simulation at the bottom of atmosphere in mid-infrared absorption bands
LIU Yao1, ZHANG Wenjuan2, ZHANG Bing2, GAN Fuping1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(6639 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This method was illustrated by applying it to simulating bottom-of-atmosphere(BOA) radiance for two 4.3 μm absorption bands of the SPIRIT-Ⅲ sensor by using MODIS data of band 23, which is close to 4.3 μm. First, surface emissivity images in these two 4.3 μm absorption bands were simulated using band translation models. Second, analytic model of BOA radiance was deduced based on an existing analytic model in mid-infrared bands, and then it was combined with simulations from radiative transfer model MODTRAN to calculate parameters of the atmospheric effects for these 4.3 μm absorption bands. Finally, based on the proposed analytic model, BOA radiance in SPIRIT-Ⅲ’s two absorption bands can be generated from surface emissivity, temperature, atmospheric effect parameters and SPIRIT-Ⅲ’s spectral response functions. Accuracy assessment on the simulation results shows that this method can produce surface emissivity and BOA radiance with errors less than 6% and 0.02%, respectively. Therefore, the method proposed in this paper can effectively and precisely simulate BOA radiance for the 4.3 μm absorption bands, and provide radiance datasets for the at-sensor radiance simulation and sensor imaging simulation.
Keywords China HJ-1B satellite      open-cast coal mine region      dry-edge model      land surface temperature(LST)      soil moisture      temperature vegetation dryness index(TVDI)     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Feifei
BAO Nisha
WU Lixin
SUN Rui
Cite this article:   
ZHAO Feifei,BAO Nisha,WU Lixin, et al. Radiance image simulation at the bottom of atmosphere in mid-infrared absorption bands[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 98-103.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.14     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/98
[1] 叶 庆,孙晓泉,邵 立.红外预警卫星最佳探测波段分析[J].红外与激光工程,2010,39(3):389-393.
Ye Q,Sun X Q,Shao L.Analysis of optimum detective wavebands for infrared early-warning satellite[J].Infrared and Laser Engineering,2010,39(3):389-393.
[2] 蒋 跃,邓 磊,臧 鹏.美国天基红外预警系统的发展现状和技术特点[J].空军雷达学院学报,2011,25(2):105-108.
Jiang Y,Deng L,Zang P.Developmental state and technical features of American space-based infrared early warning system[J].Journal of Air Force Radar Academy,2011,25(2):105-108.
[3] 陈 方,牛 铮,廖楚江.遥感图像模拟技术方法与应用分析[J].地球信息科学,2006,8(3):114-118.
Chen F,Niu Z,Liao C J.Analysis on simulation of remote sensing image and its application[J].Geo-Information Science,2006,8(3):114-118.
[4] 孙伟健,林 军,阮宁娟,等.国外光学遥感成像系统仿真软件发展综述与思考[J].航天返回与遥感,2010,31(3):70-75.
Sun W J,Lin J,Ruan N J,et al.Summarization and consideration of oversea’s simulation software development for optical remote sensing system[J].Spacecraft Recovery and Remote Sensing,2010,31(3):70-75.
[5] 马晓珊,孟 新,杨 震,等.光学遥感成像系统全链路仿真框架研究[J].量子电子学报,2012,29(4):392-399.
Ma X S,Meng X,Yang Z,et al.Framework of entire image chains simulation for optical remote sensing images system[J].Chinese Journal of Quantum Electronics,2012,29(4):392-399.
[6] 徐大琦,杜永明,林 军,等.陆地观测卫星图像模拟技术研究[J].国土资源遥感,2015,27(2):80-87.doi:10.6046/gtzyyg.2015.02.13"> doi:10.6046/gtzyyg.2015.02.13.
Xu D Q,Du Y M,Lin J,et al.Research on image simulation technology of land observation satellite[J].Remote Sensing for Land and Resources,2015,27(2):80-87.doi:10.6046/gtzyyg.2015.02.13"> doi:10.6046/gtzyyg.2015.02.13.
[7] Bartschi B Y,Morse D E,Woolston T L.The spatial infrared imaging telescope Ⅲ[J].Johns Hopkins APL Technical Digest,1996,17(2):215-225.
[8] Stair A T.MSX design parameters driven by targets and backgrounds[J].Johns Hopkins APL Technical Digest,1996,17(1):11-18.
[9] Zhang B,Liu Y,Zhang W J,et al.Analysis of the proportion of surface reflected radiance in mid-infrared absorption bands[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(6):2639-2646.
[10] Li Z L,Tang B H,Wu H,et al.Satellite-derived land surface temperature:Current status and perspectives[J].Remote Sensing of Environment,2013,131:14-37.
[11] Reda I,Andreas A.Solar position algorithm for solar radiation applications[J].Solar Energy,2004,76(5):577-589.
[12] Demir B,Celebi A,Erturk S.A low-complexity approach for the color display of hyperspectral remote-sensing images using one-bit-transform-based band selection[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(1):97-105.
[13] Zhang Y L.MODIS UCSB Emissivity Library[EB/OL].(1999-11-10)[2015-07-24].http://www.icess.ucsb.edu/modis/EMIS/html/em.html.
[14] Egan M P,Price S D,Moshir M M,et al.The Midcourse Space Experiment Point Source Catalog Version 1.2 Explanatory Guide[R].Hanscom Afb,MA:Air Force Research Lab,1999.
[15] Cota S A,Kalman L S.Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared:Generalization to arbitrary average scene temperatures[C]//Proceedings SPIE 7813,Remote Sensing System Engineering Ⅲ.San Diego,California,United States:SPIE,2010:781307.
[16] Cota S A,Bell J T,Boucher R H,et al.PICASSO:An end-to-end image simulation tool for space and airborne imaging systems[J].Journal of Applied Remote Sensing,2010,4(1):043535.
[17] Berk A,Anderson G P,Acharya P K,et al.MODTRAN4 User’s Manual[M].Hanscom Afb,MA:Air Force Research Laboratory,Space Vehicles Directorate,Air Force Materiel Command,1999.
[1] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[2] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[3] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[4] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[5] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[6] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[7] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[8] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[9] Kai WU, Hong SHU, Lei NIE, Zhenhang JIAO. Error analysis of soil moisture based on Triple Collocation method[J]. Remote Sensing for Land & Resources, 2018, 30(3): 68-75.
[10] Jun LI, Heng DONG, Xiang WANG, Lin YOU. Reconstructing missing data in soil moisture content derived from remote sensing based on optimum interpolation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 45-52.
[11] Wen ZHANG, Yan REN, Xiaolin MA, Yijie HU. Estimation of soil moisture with drought indices in Huaihe River Basin of East China[J]. Remote Sensing for Land & Resources, 2018, 30(2): 73-79.
[12] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[13] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[14] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[15] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech