Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2003, Vol. 15 Issue (2) : 64-67     DOI: 10.6046/gtzyyg.2003.02.15
Technology and Methodology |
THE DYNAMIC ANALYSIS OF REMOTE SENSING INFORMATION FOR MONITORING THE EXPANSION OF THE SELINCUO LAKE IN TIBET
YANG Ri-hong1, YU Xue-zheng1, LI Yu-long2
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resource, Beijing 100083, China;
2. Development & Research Center, China Geological Survey, Beijing 100083, China
Download: PDF(358 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  According to the remote sensing data obtained in 1972,1992 and 1999, it is found that the Selincuo lake has expanded. The area of the lake has expanded from 1707 km2 to 1823 km2. Based on an analysis of such factors as meteorological phenomena, tectonic activity and uplifting of Qinghai-Tibet plateau, this paper explains the reasons for the lake expansion. It seems that the greenhouse effect plays the major role. With the rising of the temperature, the thawing of the glacier and the softening of the frozen earth result in the formation of free water, and then the water flows into the Selincuo Lake, leading to the expansion of the lake.
Keywords Leaf Area Index (LAI)      Landsat 7 ETM+      Vegetation index     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Xiu-qin
ZHANG Wan-chang
LIU San-chao
Cite this article:   
FANG Xiu-qin,ZHANG Wan-chang,LIU San-chao. THE DYNAMIC ANALYSIS OF REMOTE SENSING INFORMATION FOR MONITORING THE EXPANSION OF THE SELINCUO LAKE IN TIBET[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(2): 64-67.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2003.02.15     OR     https://www.gtzyyg.com/EN/Y2003/V15/I2/64


[1] 傅肃性.遥感专题分析与地学图谱[M].北京:科学出版社,2000.





[2] 金相灿.中国湖泊环境[M]. 北京:海洋出版社,1995.





[3] 胡东生,张华京,等.青藏高原腹地32kaB·P·以来的古气候变化[J].湖南师范大学自然科学学报,2001,3:85-87





[4] 沈永平,徐道明.西藏安多的湖泊变化及环境[J].冰川冻土,1994,16(2):173-180.





[5] 秦伯强.近百年来亚洲中部内陆湖泊演变及其原因分析[J]. 湖泊科学,1999,1:19-26.





[6] 胡东生,张华京. 青藏高原腹地湖泊沉积序列与古气候变化[J].地质学报,2000,2:154-161.





[7] 王苏民,张振克.中国湖泊沉积与环境演变研究的新进展[J]. 科学通报,1999,6:579-587.





[8] 顾兆炎,刘嘉麒,刘东生,等.12000年以来青藏高原季风-色林错沉积物地球化学的证据[J].科学通报,1993,38(1):61-64.





[9] 林清,王国尚.青藏高原清水河冻结湖相沉积有机质特征和古湖泊环境变化[J]. 冰川冻土, 1999,3:224-230.





[10] 李栓科,李世杰.青藏高原北缘末次冰期最盛期的湖侵及其原因[J].冰川冻土,1991,13(4):299-306.





[11] 姚檀栋,郭东信,黄以职,等.青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系[J].科学通报,1991,36(20):1570-1574.





[12] Harrison T, Copelend P, Kidd W S F,et al. Rising Tibet[J]. Science,1992,255:1663-1670.





[13] 钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学,1996,26(4):289-295.





[14] 孙鸿烈,郑度.青藏高原形成演化与发展[M].广州:广东科技出版社,1998,1-65.





[15] 赖绍聪,邓晋福,赵海玲.青藏高原北缘火山作用与构造演化[M].西安:陕西科学技术出版社,1996,1-38.





[16] 肖序常,李廷栋.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社,2000,83-122,137-190.





[17] 丁林, 钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报,1995,40(16):1497-1500.





[18] 李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 1987, 17(2):155-166.





[19] 腾吉文,张中杰,杨顶辉,等.青藏高原地体划分的地球物理标志[J].地球物理学报,1996,39(5):629-640.





[20] 陈炳蔚,王彦斌,左国朝.青藏高原北部地体划分及其构造演化[J].地球物理学报,1995,38(增刊Ⅱ):98-113.





[21] Dewey J F, Carde S, Pitman W C. Tectonic evolution of the India/Eurasia Zone[J]. Geol Helv,1989,82:717-734.





[22] Coleman M,Hodges K.Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimun age for east-west extension[J]. Nature, 1995,374:49-52.





[23] Back R A, Burbank D W, Sercomde W J, et al. Stratigraphic evidence for an early collision between northwest India and Asia[J]. Nature 1995,(373):55-58.





[24] 李才,和钟铧,杨德明.西藏羌塘地区几个地质构造问题[J].世界地质,1996,15(3):18-23.





[25] 杨日红,李才,杨德明等.西藏羌塘盆地中生代构造岩相演化及油气远景[J].长春科技大学学报,2000,30(3):237-242.





[26] 赵政璋,李永铁,叶和飞等.青藏高原构造特征及演化历史研究[M].北京:科学出版社,2001.





[27] 曾融生,丁志峰,吴庆举.喜马拉雅-北祁连地壳构造与大陆-大陆碰撞过程[J].地球物理学报,1997,41(1):49-59.





[28] 皱光富.班公湖-怒江断裂带东段的构造特征[J].西藏地质,1996,16(2):77-83.





[29] 李金高,德曲.措勤-纳木错缝合带特征及其找矿意义探讨[J].西藏地质,1993,10(2):38-44.
[1] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[2] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[3] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[4] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[5] Chuan WANG, Jinghui FAN, Simei LIN, Yueming RAO, Huaguo HUANG. Study of the correlation between optical vegetation index and SAR data and the main affecting factors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 130-137.
[6] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[7] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[8] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
[9] Yuan LIU, Maichun ZHOU. Comparison of MODIS, CYCLOPES and GLASS LAI over Hanjiang River basin[J]. Remote Sensing for Land & Resources, 2018, 30(1): 14-21.
[10] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[11] YANG Yuwei, DAI Xiaoai, NIU Yutian, LIU Hanhu, YANG Xiaoxia, LAN Yan. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 179-184.
[12] SONG Yang, FANG Shibo, LIANG Hanyue, KE Lina. Comparison and application of agricultural drought indexes based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 215-220.
[13] LIANG Shouzhen, SUI Xueyan, YAO Huimin, WANG Meng, HOU Xuehui, CHEN Jinsong, MA Wandong. An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 29-36.
[14] LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
[15] HE Junliang, ZHANG Shuyuan, LI Jia, ZHA Yong. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech