Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (3) : 60-66     DOI: 10.6046/gtzyyg.2016.03.10
|
Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve
LIANG Jianping1,2, MA Daxi1, MAO Dehua2, WANG Zongming2
1. Jiangxi University of Science and Technology, Ganzhou 341000, China;
2. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
Download: PDF(2469 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the object-oriented classification method, the spatial distribution of Phragmites australis was obtained based on multi-temporal Landsat8 OLI data covering Shuangtai Estuary National Nature Reserve. By analyzing the sensitivity between different vegetation indexes and aboveground biomass (AGB) of Phragmites australis, the retrieval model of AGB for Phragmites australis was developed. Furthermore, the spatial pattern of AGB for Phragmites australis was observed. The results showed that the area of Phragmites australis was 4.39×104 hm2, accounting for 32.96% of the study area of the Shuangtai Estuary National Nature Reserve. Selecting NDVI as the variable for the power function, the authors formulated the optimal model for estimating AGB of Phragmites australis with an estimation accuracy of 79%. Average AGB of Phragmites australis was 4785.5 g/m2 and total AGB was 2.06×106 t. High values of AGB were observed in the northeast part, while low AGB values in the southwest. The results obtained in this study would provide data to support wetland ecosystem management and scientific guidance for Shuangtai Estuary National Nature Reserve.

Keywords Google Earth      Lijiang River basin      drainage characteristics      information extraction      control factor     
:  TP79  
Issue Date: 01 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Dingge
WU Hong
GUO Qi
CHEN Mengjie
Cite this article:   
LU Dingge,WU Hong,GUO Qi, et al. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.03.10     OR     https://www.gtzyyg.com/EN/Y2016/V28/I3/60

[1] 江波,欧阳志云,苗鸿,等.海河流域湿地生态系统服务功能价值评价[J].生态学报,2011,31(8):2236-2244. Jiang B,Ouyang Z Y,Miao H,et al.Ecosystem services valuation of the Haihe River basin wetlands[J].Acta Ecologica Sinica,2011,31(8):2236-2244.
[2] Keddy P A.Wetland Ecology:Principles and Conservation[M].Cambridge:Cambridge University Press,2000.
[3] 刘兴土.东北湿地[M].北京:科学出版社,2005. Liu X T.Northeast Wetland[M].Beijing:Science Press,2005.
[4] 吕宪国,王升忠,姜明,等.中国湿地与湿地研究[M].石家庄:河北科学技术出版社,2008. Lyu X G,Wang S Z,Jiang M,et al.Study on Wetland and Wetland in China[M].Shijiazhuang:Hebei Science and Technology Publishing House,2008.
[5] 王莉雯,卫亚星.盘锦湿地净初级生产力时空分布特征[J].生态学报,2012,32(19):6006-6015. Wang L W,Wei Y X.Variation analysis about net primary productivity of the wetland in Panjin region[J].Acta Ecologica Sinica,2012,32(19):6006-6015.
[6] Moreau S,Bosseno R,Gu X F,et al.Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR[J].Remote Sensing of Environment,2003,85(4):516-529.
[7] Zheng D L,Rademacher J,Chen J Q,et al.Estimating aboveground biomass using Landsat 7 ETM+data across a managed landscape in northern Wisconsin,USA[J].Remote Sensing of Environment,2004,93(3):402-411.
[8] 王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,12(2):2282-2291. Wang Q,Liao J J.Estimation of wetland vegetation biomass in the Poyang Lake area using Landsat TM and ENVISAT ASAR data[J].Journal of GEO-Information Science,2010,12(2):2282-2291.
[9] 吴涛,赵冬至,康建成,等.辽东湾双台子河口湿地翅碱蓬(Suaeda salsa)生物量遥感反演研究[J].生态环境学报,2011,20(1):24-29. Wu T,Zhao D Z,Kang J C,et al.Suaeda salsa dynamic remote monitoring and biomass remote sensing inversion in Shuangtaizi River estuary[J].Ecology and Environmental Sciences,2011,20(1):24-29.
[10] 李旭文,季耿善,杨静.太湖梅梁湖湾蓝藻生物量的遥感估算[J].遥感信息,1995(1):35-38. Li X W,Ji G S,Yang J.Estimating cyanophyta biomasss standing crops in meiliang gulf of Lake Taihu by satellite remote sensing[J].Remote Sensing Information,1995(1):35-38.
[11] Moreau S,Le Toan T.Biomass quantification of Andean wetland forages using ERS satellite SAR data for optimizing livestock management[J].Remote Sensing of Environment,2003,84(4):477-492.
[12] Van T K,Rayachhetry M B,Center T D.Estimating above-ground biomass of Melaleuca quinquenervia in Florida,USA[J].Journal of Aquatic Plant Management,2000,38(1):62-67.
[13] 黎夏,叶嘉安,王树功,等.红树林湿地植被生物量的雷达遥感估算[J].遥感学报,2006,10(3):387-396. Li X,Ye J A,Wang S G,et al.Estimating mangrove wetland biomass using radar remote sensing[J].Journal of Remote Sensing,2006,10(3):387-396.
[14] 高明亮,赵文吉,宫兆宁,等.基于环境卫星数据的黄河湿地植被生物量反演研究[J].生态学报,2013,33(2):542-553. Gao M L,Zhao W J,Gong Z N,et al.The study of vegetation biomass inversion based on the HJ satellite data in Yellow River wetland[J].Acta Ecologica Sinica,2013,33(2):542-553.
[15] 徐东霞,章光新.人类活动对中国滨海湿地的影响及其保护对策[J].湿地科学,2007,5(3):282-288. Xu D X,Zhang G X.Impact of human activities on coastal wetlands in China[J].Wetland Science,2007,5(3):282-288.
[16] 陈克林,张小红,吕咏.气候变化与湿地[J].湿地科学,2003,1(1):73-77. Chen K L,Zhang X H,Lyu Y.Climate change and wetland[J].Wetland Science,2003,1(1):73-77.
[17] 李延峰,毛德华,王宗明,等.双台河口国家级自然保护区芦苇叶面积指数遥感反演与空间格局分析[J].湿地科学,2014,12(2):163-169. Li Y F,Mao D H,Wang Z M,et al.Remote sensing retrieval and spatial pattern analysis of leaf area index of Phragmites australis in Shuangtai estuary national nature reserve[J].Wetland Science,2014,12(2):163-169.
[18] 孙俊杰,马大喜,任春颖,等.基于多时相环境卫星数据的南瓮河流域湿地信息提取方法研究[J].湿地科学,2013,11(1):60-67. Sun J J,Ma D X,Ren C Y,et al.Method of extraction of wetlands information in Nanweng River Basin based on multi-temporal environment satellite images[J].Wetland Science,2013,11(1):60-67.
[19] 谢静,王宗明,毛德华,等.基于面向对象方法和多时相HJ-1影像的湿地遥感分类——以完达山以北三江平原为例[J].湿地科学,2012,10(4):429-438. Xie J,Wang Z M,Mao D H,et al.Remote sensing classification of wetlands using object-oriented method and multi-season HJ-1 images:A case study in the Sanjiang Plain north of the Wandashan Mountain[J].Wetland Science,2012,10(4):429-438.
[20] 宋小宁,赵英时.应用MODIS卫星数据提取植被-温度-水分综合指数的研究[J].地理与地理信息科学,2004,20(2):13-17. Song X N,Zhao Y S.Study on vegetation-temperature-water synthesis index using MODIS satellite data[J].Geography and Geo-Information Science,2004,20(2):13-17.
[21] 贾明明,王宗明,张柏,等.综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J].武汉大学学报:信息科学版,2014,39(3):305-310. Jia M M,Wang Z M,Zhang B,et al.Land cover classification of compositing HJ-1 and MODIS data based on object-based method[J].Geomatics and Information Science of Wuhan University,2014,39(3):305-310.
[22] Ji L,Wylie B K,Nossov D R,et al.Estimating aboveground biomass in interior Alaska with Landsat data and field measurements[J].International Journal of Applied Earth Observation and Geoinformation,2012,18:451-461.
[23] 卢纹岱.SPSS统计分析[M].4版.北京:电子工业出版社,2010. Lu W D.SPSS Statistical Analysis[M].4th ed.Beijing:Electronic Industry Press,2010.
[24] 罗玲,王宗明,任春颖,等.基于MODIS数据的松嫩草原产草量遥感估算模型与空间反演[J].农业工程学报,2010,26(5):182-187. Luo L,Wang Z M,Ren C Y.Models for estimation grassland production and spatial inversion based on MODIS data in Songnen Plain[J].Transactions of the CSAE,2010,26(5):182-187.
[25] 牛婷,李霞,林海军,等.塔里木河下游芦苇生物量遥感估算模型研建[J].国土资源遥感,2011,23(4):42-45.doi:10.6046/gtzyyg.2011.04.08. Niu T,Li X,Lin H J,et al.The construction of the remote sensing estimation models for reed biomass in the lower reaches of the Tarim River[J].Remote Sensing for Land and Resources,2011,23(4):42-45.doi:10.6046/gtzyyg.2011.04.08.
[26] 李延峰.东北典型区芦苇分布提取与地上生物量遥感估算[D].长春:中国科学院东北地理与农业生态研究所,2014. Li Y F.Phragmites Australis Extraction and Aboveground Biomass Estimation in Typical Regions of Northeast China,Using Remote Sensing Technology[D].Changchun:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2014.
[27] 王丹,张银龙,庞博,等.苏州太湖湿地芦苇生物量与水深的动态特征研究[J].环境污染与防治,2010,32(7):49-54. Wang D,Zhang Y L,Pang B,et al.Study on dynamic characteristics between the biomass of Phragmites communis and water depth at Taihu wetland in Suzhou[J].Environmental Pollution and Control,2010,32(7):49-54.
[28] 赵文智,常学礼,李启森,等.荒漠绿洲区芦苇种群构件生物量与地下水埋深关系[J].生态学报,2003,23(6):1138-1146. Zhao W Z,Chang X L,Li Q S,et al.Relationship between structural component biomass of reed population and ground water depth in desert oasis[J].Acta Ecologica Sinica,2003,23(6):1138-1146.

[1] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[2] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
[3] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[4] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[5] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[6] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[7] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[8] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[9] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[10] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[11] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[12] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[13] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
[14] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[15] Yong WANG, Yinling ZHANG, Shucheng YOU, Zhongwu WANG, Hai WEI, Yang LI. Checkup of land consolidation project using ZY1-02C data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 144-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech