Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 204-211     DOI: 10.6046/gtzyyg.2019.01.27
|
Potential analysis of typical vegetation index for identifying burned area
Guifen SUN1, Xianlin QIN1(), Shuchao LIU1, Xiaotong LI1, Xiaozhong CHEN2, Xiangqing ZHONG2
1.Key Laboratory of Forestry Remote Sensing and Information Techniques, State Forestry Administration, Research Institute of Forest Resources Information Technique, Chinese Academy of Forestry, Beijing 100091, China
2.Forestry Information Center of Sichuan Province, Chengdu 610081, China
Download: PDF(4949 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation index is one of the commonly used method for adopting satellite remote sensing image to identify burned areas. Due to the disturbance of fire, vegetation becomes burned area, and its spectral characteristics are easily confused with the spectra of bare land, water body, road, shadow and arable land and some other factors. Therefore, the improvement of the accuracy of remote sensing monitoring for burned area using appropriate vegetation index remains an urgent problem. In this paper, four burned areas in Sichuan Province and Inner Mongolia where fire burning occurred in 2014 and 2017 were selected as the study areas. Based on the spectral characteristics of Gaofen-1 satellite 16 m wide width (GF-1 WFV) data and Landsat8 data, the authors chose normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), global environment monitoring index (GEMI), burned area index (BAI) and normalized burn ration (NBR) and constructed separation index M of different spectral indices to quantitatively evaluate the potential of different spectral indices for burned areas identification. The results show that NBR calculated with near-infrared and short-wave infrared band and BAI based on visible light-near infrared band have a better capability for separating burned areas, the separability of NDVI takes the second, whereas EVI and GEMI have a poor separability. For GF-1 WFV data and Landsat8 data, BAI and NBR which have a good separate capability for burned area identification were used for the burned area in Oroqen Autonomous Banner of Inner Mongolia to separate burned areas (for GF-1 WFV data, only BAI was used to identify burned area), and Gaofen-2 satellite (GF-2) data which have higher spatial resolution combined with confusion matrix method were used to verify the accuracy. The overall accuracy of both methods were higher than 87%, and the Kappa coefficients were all higher than 0.7.

Keywords GF-1 WFV data      Landsat8 data      burned area      vegetation index      separability     
:  TP79  
Corresponding Authors: Xianlin QIN     E-mail: noaags@ifrit.ac.cn
Issue Date: 14 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guifen SUN
Xianlin QIN
Shuchao LIU
Xiaotong LI
Xiaozhong CHEN
Xiangqing ZHONG
Cite this article:   
Guifen SUN,Xianlin QIN,Shuchao LIU, et al. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.27     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/204
编号 研究区 火烧时间 火场中心经纬度 火场中心位置海拔/m 过火面积/hm2
1 陈巴尔虎旗火烧迹地 20170517 49°55'09"N,120°51'16"E 925 8 400
2 鄂伦春自治旗火烧迹地 20170502 49°30'32"N,123°06'02"E 500 11 500
3 雅江县火烧迹地 20140125 30°04'48"N,101°10'53"E 3 800 32
4 冕宁县火烧迹地 20140214 28°33'36"N,102°13'12"E 2 539 63
Tab.1  Profile of burned area
研究区 GF-1WFV
获取时间
Landsat8
获取时间
GF-2
获取时间
陈巴尔虎旗火烧迹地 20170605 20170624
鄂伦春自治旗火烧迹地 20170605 20170509 20170613
雅江县火烧迹地 20170222 20140131
冕宁县火烧迹地 20140226 20140225
Tab.2  Acquisition information of remote sensing data
Fig.1  Spectral curves of typical features in GF-1 WFV and Landsat8 images
Fig.2  Technique flow chart
Fig.3  Vegetation index values of typical features extracted by GF-1 WFV and Landsat8 data
Fig.4  Separability index M of typical features extracted by GF-1 WFV and Landsat8 data
Fig.5  Remote sensing images in study area and identification results of burned area
GF-1 Landsat8
评价指标 BAI NBR BAI
火烧区制图精度/% 78.95 61.84 72.45
未火烧区制图精度/% 96.59 96.92 94.55
火烧区用户精度/% 91.46 92.68 86.59
未火烧区用户精度/% 90.83 86.70 87.61
总体精度/% 91.00 88.33 87.33
Kappa系数 0.78 0.73 0.70
Tab.3  Results of accuracy evaluation
[1] Dubinin M, Potapov P, Lushchekina A , et al. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing[J]. Remote Sensing of Environment, 2010,114(8):1638-1648.
doi: 10.1016/j.rse.2010.02.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710000696
[2] Key C H . Ecological and sampling constraints on defining landscape fire severity[J]. Fire Ecology, 2006,2(2):34-59.
doi: 10.4996/fireecology.0202034 url: http://www.fireecology.net/JournalMast
[3] Roy D P, Jin Y, Lewis P E , et al. Prototyping a global alforithm for systematic fire-affected area mapping using MODIS time series data[J]. Remote Sensing of Environment, 2005,97(2):137-162.
doi: 10.1016/j.rse.2005.04.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425705001136
[4] Veraverbeke S, Harris S, Hook S . Evaluating spectral indices for burned area discrimination using MODIS/ASTER(MASTER) airborne simulator data[J]. Remote sensing of Environment, 2011,115(10):2702-2709.
doi: 10.1016/j.rse.2011.06.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711002343
[5] Carriello F, Anderson L O, Adami M. Multitemporal analysis of the spectral response of scars of burnt area using the Landsat/ETM sensor[C]// IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Barcelona:IEEE, 2007.
[6] Chuvieco E, Martín M P, Palacios A . Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination[J]. International Journal of Remote Sensing, 2002,23(23):5103-5110.
doi: 10.1080/01431160210153129 url: https://www.tandfonline.com/doi/full/10.1080/01431160210153129
[7] 朱曦, 覃先林 . 基于二阶段算法的HJ-CCD数据过火区制图[J]. 遥感技术与应用, 2013,28(1):72-77.
doi: 10.11873/j.issn.1004-0323.2013.1.72 url: http://www.cnki.com.cn/Article/CJFDTotal-YGJS201301011.htm
[7] Zhu X, Qin X L . Burned area mapping using HJ-1A/B CCD data based on two-phase algorithm[J]. Remote Sensing Technology and Application, 2013,28(1):72-77.
[8] Huete A, Didan K, Miura T , et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002,83(1):195-213.
doi: 10.1016/S0034-4257(02)00096-2 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425702000962
[9] Pinty B, Verstraete M M . GEMI:A nonlinear index to monitor global vegetation from satellites[J]. Vegetatio, 1992,101(1):15-20.
doi: 10.1007/BF00031911 url: http://link.springer.com/10.1007/BF00031911
[10] Loboda T, O’neal K J, Csiszar I . Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data[J]. Remote Sensing of Environment, 2007,109(4):429-442.
doi: 10.1016/j.rse.2007.01.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425707000715
[11] López García M J L, Caselles V . Mapping burns and natural reforestation using thematic mapper data[J]. Geocarto International, 1991,6(1):31-37.
doi: 10.1080/10106049109354290 url: http://www.tandfonline.com/doi/abs/10.1080/10106049109354290
[12] Bastarrika A, Chuvieco E, Martin M P . Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm:Balancing omission and commission errors[J]. Remote Sensing of Environment, 2011,115(4):1003-1012.
doi: 10.1016/j.rse.2010.12.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710003433
[13] 覃先林 . 林火卫星遥感监测[M]. 北京: 中国林业出版社, 2016: 10-12.
[13] Qin X L. Forest Fire Monitoring Using Satellite Remote Sensing[M]. Beijing: China Forestry Publishing House, 2016: 10-12.
[14] Wulder M A, White J C, Alvarez F , et al. Characterizing boreal forest wildfire with multi-temporal Landsat and LiDAR data[J]. Remote Sensing of Environment, 2009,113(7):1540-1555.
doi: 10.1016/j.rse.2009.03.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709000844
[15] Kennedy R E, Yang Z Q, Cohen W B . Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010,114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002245
[16] Cohen W B, Yang Z Q, Kennedy R . Detecting trends in forest disturbance and recovery using yearly Landsat time series:2.TimeSync-Tools for calibration and validation[J]. Remote Sensing of Environment, 2010,114(12):2911-2924.
doi: 10.1016/j.rse.2010.07.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710002269
[17] Kaufman Y J, Remer L A . Detection of forests using mid-IR reflectance:An application for aerosol studies[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(3):672-683.
doi: 10.1109/36.297984 url: http://ieeexplore.ieee.org/document/297984/
[18] Lasaponara R . Estimating spectral separability of satellite derived parameters for burned areas mapping in the Calabria region by using SPOT-Vegetation data[J]. Ecological Modelling, 2006,196(1-2):265-270.
doi: 10.1016/j.ecolmodel.2006.02.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0304380006000676
[19] Smith A M S, Drake N A, Wooster M J , et al. Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs:Comparison of methods and application to MODIS[J]. International Journal of Remote Sensing, 2007,28(12):2753-2775.
doi: 10.1080/01431160600954704 url: https://www.tandfonline.com/doi/full/10.1080/01431160600954704
[20] Gitas I Z, Devereux B J . The role of topographic correction in mapping recently burned Mediterranean forest areas from Landsat TM images[J]. International Journal of Remote Sensing, 2006,27(1):41-54.
doi: 10.1080/01431160500182992 url: https://www.tandfonline.com/doi/full/10.1080/01431160500182992
[1] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[2] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[3] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[4] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[5] Chuan WANG, Jinghui FAN, Simei LIN, Yueming RAO, Huaguo HUANG. Study of the correlation between optical vegetation index and SAR data and the main affecting factors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 130-137.
[6] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[7] Qin ZHENG, Jun PAN, Lijun JIANG, Lixin XING, Yue JI, Yifan YU, Pengju WANG, Weijing ZHONG. A study of high temperature targets identification method based on spectral index[J]. Remote Sensing for Land & Resources, 2019, 31(3): 51-58.
[8] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[9] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[10] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
[11] Kun LU, Qingyan MENG, Yunxiao SUN, Zhenhui SUN, Linlin ZHANG. Estimating leaf area index of wheat at the booting stage using GF-2 data: A case study of Langfang City,Hebei Province[J]. Remote Sensing for Land & Resources, 2018, 30(1): 196-202.
[12] LIANG Shouzhen, SUI Xueyan, YAO Huimin, WANG Meng, HOU Xuehui, CHEN Jinsong, MA Wandong. An analysis of influence of non-photosynthetic vegetation of deciduous broad-leaved forest on canopy FPAR: A method based on layered simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 29-36.
[13] SONG Yang, FANG Shibo, LIANG Hanyue, KE Lina. Comparison and application of agricultural drought indexes based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 215-220.
[14] LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
[15] HE Junliang, ZHANG Shuyuan, LI Jia, ZHA Yong. Particulate matter indices derived from MODIS data for indicating urban air pollution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 126-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech