Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 130-137     DOI: 10.6046/gtzyyg.2020.02.17
|
Study of the correlation between optical vegetation index and SAR data and the main affecting factors
Chuan WANG1, Jinghui FAN2, Simei LIN1, Yueming RAO1, Huaguo HUANG1()
1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natrual Resources, Beijing 100083, China
Download: PDF(2953 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation index is an important approach in vegetation monitoring and investigation. SAR data are free with weather condition observing data day and night. Building relationships between SAR data and vegetation indices can contribute to fusing two data to improve temporal monitoring in forest of mountain areas. Therefore, the authors made a statistical analysis between vegetation indices including NDVI, EVI, GVI, NDWI and C band SAR data and then made a comparison about difference of correlation between NDVI, NDWI and X, C, L band SAR data in different forest disturbances in Genhe forest region of Da Hinggan Mountains in Inner Mongolia. The results are as follows: ①PR and interferometry coefficients both have significant negative correlations with optical vegetation indices, PR has strong linear correlations with NDVI, EVI, GVI (R2=0.40~0.49), and interferometry coefficients have strong linear correlations with all optical indices (R2=0.43~0.51). ②Ground cover can affect linear regression between VH and NDVI. Scrub-grass land and fires scars with thick vegetation layer and forest land have a strong linear correlation with NDVI (R2=0.64~0.76). ③The correlations are different for different forest disturbances: In fires scars, NDVI has significant negative correlations with X- band HH, and C band PR and NDWI have a significant positive correlation with C band VH. In deforestation areas, L-band PR has significant negative correlations with NDVI, and L band VV and VH have significant positive correlations with NDWI. In undisturbed forest land, C-band PR has significant negative correlations with NDVI and NDWI.

Keywords vegetation index      SAR remote sensing parameter      fire scar      deforestation      correlation     
:  TP79  
Corresponding Authors: Huaguo HUANG     E-mail: huaguo_huang@bjfu.edu.cn
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chuan WANG
Jinghui FAN
Simei LIN
Yueming RAO
Huaguo HUANG
Cite this article:   
Chuan WANG,Jinghui FAN,Simei LIN, et al. Study of the correlation between optical vegetation index and SAR data and the main affecting factors[J]. Remote Sensing for Land & Resources, 2020, 32(2): 130-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.17     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/130
Fig.1  Satellite image of the study area
火烧时间 面积/hm2 火烧时间 面积/hm2
2003年 238.05 2010年 369.77
2003年 102 136.62 2010年 121.57
2003年 137.57 2010年 138.73
2003年 3 377.03 2010年 99.39
2003年 716.92 2010年 1 740.77
2003年 1 307.02 2010年 98.35
2003年 137.48 2010年 221.82
2004年 61.67 2010年 389.75
2008年 1 740.77 2012年 171.18
2010年 1 174.03 2012年 948.42
2010年 77.08 2016年 728.81
Tab.1  The essential information of fire scars
采伐时间 面积/hm2 采伐时间 面积/hm2
1984年 1.51 1989年 2.80
1984年 9.13 1989年 4.25
1984年 7.99 1989年 6.05
1984年 7.05 1989年 2.76
1984年 3.79 1989年 2.34
1984年 3.40 1989年 7.03
1984年 4.98 1989年 11.41
1984年 3.45 1989年 7.96
1985年 9.63 1990年 3.99
1985年 4.02 1990年 2.17
1985年 2.32 1990年 1.32
1987年 2.50 1990年 0.96
1988年 4.31 1991年 2.80
1988年 3.24 1991年 2.42
Tab.2  The essential information of deforestation areas
卫星及传感器 波段 成像时间 空间分辨率/m 极化模式 数量/景 分析用途
Landsat8 OLI 光学 2018年8月 30 2 根河林区植被指数与SAR数据相关性分析和回归分析
Sentinel-1B C 2018年8月 30 VV+VH 2
Landsat5 TM 光学 2011年5月16日 30 1 火烧、采伐、对照区域植被指数与SAR数据相关性分析
Landsat8 OLI 光学 2017年4月30日 30 2
TerraSAR-X X 2011年4月24 日 11 HH 1
Sentinel-1B C 2017年5月2日 30 VV+VH 2
ALOS
PALSAR2
L 2017年4—5月 4.4 HH+VV+
HV+VH
5
Tab.3  The basic information and purpose of analysis about satellite sensors
Fig.2  Flow chart of correlation analysis between optical indices and SAR data
Fig.3  Influence of forest disturbance on correlation between optical indices and SAR data
植被
指数
R1 R2
VV VH PR VV VH PR
NDVI 0.06 0.49** -0.71** -0.03 0.37** -0.67**
EVI 0.09 0.47** -0.64** 0.04 0.43** -0.68**
GVI 0.10 0.48** -0.63** -0.03 0.36** -0.66**
NDWI 0.31** 0.59** -0.54** 0.31** 0.54** -0.49**
Tab.4  Correlation analysis between SAR data of Sentinel-1B and optical indices of Landsat8 images
植被指数 8月14日 8月30日
γVV γVH γVV γVH
NDVI -0.51** -0.72** -0.49** -0.70**
EVI -0.49** -0.68** -0.47** -0.66**
GVI -0.50** -0.67** -0.48** -0.66**
NDWI -0.50** -0.68** -0.42** -0.59**
Tab.5  Correlation analysis between interferometry coefficients and optical indices of Landsat8 images
植被
指数
R12 R22 R32 R42
VH PR VH PR γVV γVH γVV γVH
NDVI 0.23 0.50 0.14 0.45 0.26 0.51 0.24 0.47
EVI 0.21 0.39 0.18 0.44 0.24 0.46 0.21 0.43
GVI 0.22 0.39 0.13 0.44 0.24 0.45 0.22 0.43
NDWI 0.34 0.28 0.29 0.23 0.24 0.46 0.18 0.35
Tab.6  Correlation analysis between VH, PR, interferometry coefficients of Sentinel-1B and optical indices of Landsat8 images
Fig.4  The scatter diagram between backscattering coefficient and NDVI
Fig.5  Quantitative statistic for pixels with different ground objects for AH and BH
Fig.6  Distribution characteristics of NDVI in shrub areas and fire scars
Fig.7  Recovering time of fires scars and distribution characteristics of NDVI
[1] 田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998,13(4):327-333.
[1] Tian Q J, Min X J. Advances in study on vegetation indices[J]. Advances in Earth Sciences, 1998,13(4):327-333.
[2] 薛娟, 俞琳锋, 林起楠, 等. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018,30(4):111-117.doi: 10.6046/gtzyyg.2018.04.17.
[2] Xue J, Yu L F, Lin Q N, Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest.Remote Sensing for Land and Resources. 2018,30(4):111-117.doi: 10.6046/gtzyyg.2018.04.17.
[3] Reiche J, Verbesselt J, Hoekman D, et al. Fusing Landsat and SAR time series to detect deforestation in the tropics[J]. Remote Sensing of Environment, 2015,156(156):276-293.
doi: 10.1016/j.rse.2014.10.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714003885
[4] Capodici F, D’urso G, Maltese A. Investigating the relationship between X-band SAR data from COSMO-SkyMed satellite and NDVI for LAI detection[J]. Remote Sensing, 2013,5(3):1389-1404.
[5] Gebhardt S, Huth J, Nguyen L D, et al. A comparison of TerraSAR-X Quadpol backscattering with RapidEye multispectral vegetation indices over rice fields in the Mekong Delta,Vietnam[J]. International Journal of Remote Sensing, 2012,33(24):7644-7661.
[6] Stendardi L, Karlsen S R, Niedrist G, et al. Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow phenology in mountain regions[J]. Remote Sensing, 2019,11(5):542.
[7] Baghdadi N, Boyer N, Todoroff P, et al. Potential of SAR sensors TerraSAR-X,ASAR/ENVISAT and PALSAR/ALOS for monitoring sugarcane crops on Reunion Island[J]. Remote Sensing of Environment, 2009,113(8):1724-1738.
[8] Wang X, Ge L, Li X. Pasture monitoring using SAR with Cosmo-skymed,Envisat ASAR,and ALOS PALSAR in Otway,Australia[J]. Remote Sensing, 2013,5(7):3611-3636.
doi: 10.3390/rs5073611 url: http://www.mdpi.com/2072-4292/5/7/3611
[9] Tanase M A, Santoro M, De l R J, et al.Sensitivity of X-,C-,and L-band SAR backscatter to burn severity in mediterranean pine forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(10):3663-3675.
[10] 高永年, 张万昌. 遥感影像地形校正研究进展及其比较实验[J]. 地理研究, 2008,27(2):467-477.
[10] Gao Y N, Zhang W C. Comparison test and research progress of topographic correction on remotely sensed data[J]. Geographical Research, 2008,27(2):467-477.
[11] Lievens H, Verhoest N E C.On the Retrieval of soil moisture in wheat fields from L-band SAR based on water cloud modeling,the IEM,and effective roughness parameters[J]. IEEE Geoscience and Remote Sensing Letters, 2011,8(4):740-744.
doi: 10.1109/LGRS.2011.2106109 url: http://ieeexplore.ieee.org/document/5721785/
[12] Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the great plains with ERTS[J]. NASA Special Publication, 1973,351:309.
[13] Hui Q L, Huete A. Feedback based modification of the NDVI to minimize canopy background and atmospheric noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):457-465.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[14] Baig M H A, Zhang L, Tong S, et al. Derivation of a tasselled cap transformation based on Landsat8 at-satellite reflectance[J]. Remote Sensing Letters, 2014,5(5):423-431.
doi: 10.1080/2150704X.2014.915434 url: http://dx.doi.org/10.1080/2150704X.2014.915434
[15] Gao B C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote sensing of Environment, 1996,58(3):257-266.
doi: 10.1016/S0034-4257(96)00067-3 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425796000673
[16] 侯学会, 刘思含, 高帅, 等. 基于Prosail模型和Landsat8数据的小麦冠层含水量反演比较[J]. 麦类作物学报, 2018,38(4):493-497.
[16] Hou X H, Liu S H, Gao S, et al. Comparison between Prosail model and Landsat8 images in inversion of water content of wheat canopy[J]. Journal of Triticeae Crops, 2018,38(4):493-497.
[17] Woodhouse I H. 微波遥感导论[M]. 北京: 科学出版社, 2014.
[17] Woodhouse I H. Introduction to microwave remote sensing[M]. Beijing: Science Press, 2014.
[18] 王超, 张红, 刘智. 星载合成孔径雷达干涉测量[M]. 北京: 科学出版社, 2002.
[18] Wang C, Zhang H, Liu Z. Spaceborne synthetic aperture Radar interferometry[M]. Beijing: Science Press, 2002.
[19] Jung J, Yun S H, Kim D J, et al. Damage-mapping algorithm based on coherence model using multitemporal polarimetric-interferometric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(3):1520-1532.
doi: 10.1109/TGRS.2017.2764748 url: http://ieeexplore.ieee.org/document/8124198/
[20] Ulaby F T. Handbook of Radar scattering statistics for terrain[M]. Norwood,MA:Artech House, 1989.
[21] Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002,295(5559):1517-1520.
[22] West G B, Enquist B J, Brown J H. A general quantitative theory of forest structure and dynamics[J]. Proceedings of the National Academy of Sciences, 2009,106(17):7040-7045.
[23] Huang H, Zhang Z, Ni W, et al. Extending RAPID model to simulate forest microwave backscattering[J], Remote Sensing of Environment, 2018,217:272-291.
doi: 10.1016/j.rse.2018.08.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718303766
[1] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[2] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[3] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[4] WANG Juanjuan, WU Zhaopeng, WANG Shanshan, YIN Huihui. An analysis of the pattern of land-use conflicts in valley oases in arid areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 243-251.
[5] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[6] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[7] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[8] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[9] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[10] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
[11] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
[12] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[13] Lixin DONG. Multi-model estimation of forest leaf area index in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 73-81.
[14] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[15] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech