Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 267-271     DOI: 10.6046/zrzyyg.2023139
|
Multi-directional target detection based on depth features
YU Miao1(), JING Hongbo1, WANG Xiang2, LI Xingjiu1
1. Beijing Urban Construction Survey, Design and Research Institute Co., Ltd., Beijing 100101, China
2. Emerging Hua’an Smart Technology Co., Ltd.,Beijing 100160, China
Download: PDF(1845 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, target detection, as an important branch of computer vision technology, has been widely applied in fields such as medicine, military affairs, and urban rail transit. As satellite and remote sensing technologies advance, images obtained using these technologies contain abundant information. This makes it crucial to conduct automatic target detection and understanding of these images. However, due to the random directions and dense distribution of targets in remote sensing images, conventional methods are prone to lead to missing or incorrect detection. In response, this study proposes a multi-convolution kernel feature combination-based adaptive region proposal network (MFCARPN) algorithm for multi-directional detection. This algorithm introduces multiple convolution kernel features for target extraction. The weight parameters of these convolution kernel features can be determined through adaptive learning according to the differences between the targets, yielding the characteristic patterns that match better with targets. Meanwhile, in combination with the original features of the targets, the parameters of the classification and regression model vary dynamically according to the difference between targets. Thus, the RPN’s adaptive ability can be improved. The experimental results indicate that the mAP of the standard dataset DOTA reached up to 75.52%, which is 0.5 percentages higher than that of the baseline algorithm GV. Therefore, the MFCARPN algorithm proposed in this study proves effective.

Keywords remote sensing image      adaptive ability      MFCARPN      multi-directional detection     
ZTFLH:  TP391.4  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Miao YU
Hongbo JING
Xiang WANG
Xingjiu LI
Cite this article:   
Miao YU,Hongbo JING,Xiang WANG, et al. Multi-directional target detection based on depth features[J]. Remote Sensing for Natural Resources, 2024, 36(3): 267-271.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023139     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/267
Fig.1  Research route of risk source identification
Fig.2  MFCARPN network structure
Fig.3  Pooled adaptive network
类别 大型车辆 游泳池 直升飞机 桥梁 飞机 田径场 小型车 海港
示例
类别 棒球场 网球场 篮球场 足球场 储罐 舰船 环岛
示例
Tab.1  Target image of DOTA dataset
类别 FR-O R2CNN R-trans GV MFCARPN
飞机 79.42 80.94 88.64 89.64 90.57
棒球场 44.13 65.67 78.52 85.00 82.95
桥梁 17.70 35.34 43.44 52.26 52.20
田径场 64.05 67.44 75.92 77.34 68.04
小型车辆 35.30 59.92 68.81 73.01 61.91
大型车辆 38.02 50.91 73.60 73.14 78.98
游泳池 37.16 55.81 83.59 86.82 80.07
网球场 89.41 90.67 90.74 90.74 90.84
篮球场 69.64 66.92 77.27 79.02 88.70
储罐 59.28 72.39 81.46 86.81 87.91
足球场 50.30 55.06 58.39 59.55 59.86
环岛 52.91 52.23 53.54 70.91 71.83
海港 47.89 55.14 62.83 72.94 74.07
舰船 47.40 53.35 58.93 70.86 66.87
直升机 46.30 48.22 47.67 57.32 77.97
mAP 54.13 60.67 69.56 75.02 75.52
Tab.2  Results of quantitative experiments(%)
[1] Tang T, Zhou S, Deng Z, et al. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks[J]. Remote Sensing, 2017, 9(11):1170.
[2] 郭俊, 宁志勇, 王亚涛, 等. 基于视频大数据的施工安全监测研究及应用[J]. 科技与创新, 2023(6):153-159.
[2] Guo J, Ning Z Y, Wang Y T, et al. Research and application of construction safety monitoring based on video big data[J]. Science and Technology & Innovation, 2023(6):153-159.
[3] 江思阳. 基于计算机视觉的城市轨道交通弓网磨耗病害检测技术研究[D]. 北京: 北京交通大学, 2020.
[3] Jiang S Y. Research on abrasion defect detection technology of urban rail transit pantograph and catenary based on computer vision[D]. Beijing: Beijing Jiaotong University, 2020.
[4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communication of the ACM, 2017, 60(6):84-90.
[5] Redmon J, Farhadi A. YOLOv3:An incremental improvement[J/OL]. arXiv, 2018(2018-04-08). https://arxiv.org/abs/1804.02767.
url: https://arxiv.org/abs/1804.02767
[6] Tian Z, Shen C, Chen H, et al. FCOS:Fully convolutional one-stage object detection[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE, 2020:9627-9636.
[7] Jiang Y, Zhu X, Wang X, et al. R2CNN:Rotational region CNN for orientation robust scene text detection[J/OL]. arXiv, 2017(2017-06-29). https://arxiv.org/abs/1706.09579.
url: https://arxiv.org/abs/1706.09579
[8] Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE, 2018:3974-3983.
[9] 王振华, 谭智联, 李静, 等. Re-YOLOX:利用Resizer改进的YOLOX近岸海域监测目标识别模型[J]. 自然资源遥感, 2023, 35(3):10-16.doi:10.6046/zrzyyg.2022425.
[9] Wang Z H, Tan Z L, Li J, et al. Re-YOLOX:A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model[J]. Remote Sensing for Natural Resources, 2023, 35(3):10-16.doi:10.6046/zrzyyg.2022425.
[10] Xu Y, Fu M, Wang Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4):1452-1459.
[11] Pan X, Ren Y, Sheng K, et al. Dynamic refinement network for oriented and densely packed object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:11204-11213.
[12] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[1] TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings[J]. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
[2] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[3] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[4] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[5] ZHAO Binru, NIU Siwen, WANG Liyan, YANG Xiaotong, JIAO Hongbo, WANG Zike. An intelligent color enhancement method for high-resolution remote sensing images of the coastal zone of an island[J]. Remote Sensing for Natural Resources, 2024, 36(2): 70-79.
[6] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[7] LIU Yujia, XIE Shizhe, DU Yang, YAN Jin, NAN Yanyun, WEN Zhongkai. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1): 58-66.
[8] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[9] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[10] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[11] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[12] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[13] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech