|
|
|
|
|
|
A two-stage remote sensing image inpainting network combined with spatial semantic attention |
LIU Yujia1( ), XIE Shizhe2, DU Yang3, YAN Jin4,5( ), NAN Yanyun4, WEN Zhongkai3,6 |
1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China 2. School of Information Engineering, China University of Geosciemces(Beijing), Beijing 100083, China 3. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 4. National Earthquake Response Support Service, Beijing 100049, China 5. College of Resource Environment and Toursim, Capital Normal University, Beijing 100048, China 6. Institute of Remote Sensing Satellite, CAST,Beijing 100094, China |
|
|
Abstract In high-resolution remote sensing images, missing areas feature intricate surface features and pronounced spatial heterogeneity, causing the image inpainting results to suffer texture blurring and structural distortion, particularly for boundaries and areas with complex textures. This study proposed a two-stage remote sensing image inpainting network combined with spatial semantic attention (SSA). The network comprised two networks in series: one for coarse image inpainting and one for fine-scale image inpainting (also referred to as the coarse and fine-scale networks, respectively). This network was designed to guide the fine-scale network to restore the missing areas using the priori information provided by the coarse network. In the coarse network, a multi-level loss structure was constructed to enhance the stability of network training. In the fine-scale network, a novel SSA mechanism was proposed, with SSA being embedded differentially in the encoder and decoder based on the distribution of network features. This ensured the continuity of local features and the correlation of global semantic information. The experimental results show that the network proposed in this study can further improve the image inpainting effects compared to other existing algorithms.
|
Keywords
two-stage network
remote sensing image inpainting
spatial semantic attention
continuity of local features
correlation of global semantic information
|
|
Issue Date: 13 March 2024
|
|
|
[1] |
张兵. 当代遥感科技发展的现状与未来展望[J]. 中国科学院院刊, 2017, 32(7):774-784.
|
[1] |
Zhang B. Current status and future prospects of remote sensing[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(7):774-784.
|
[2] |
沈远航. CCD拼接相机技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.
|
[2] |
Shen Y H. Research on technology of CCD mosaic camera[D]. Chengdu: Institute of Optics and Electronics,Chinese Academy of Sciences, 2020.
|
[3] |
陈仁喜, 李鑫慧. GIS辅助数据下的影像缺失信息恢复[J]. 武汉大学学报(信息科学版), 2008, 33(5):461-464.
|
[3] |
Chen R X, Li X H. Restoring lost information on remote sensing images based on accessorial GIS data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):461-464.
|
[4] |
张强. 基于时—空—谱深度特征学习的遥感影像缺失信息重建方法研究[D]. 武汉: 武汉大学, 2019.
|
[4] |
Zhang Q. Research on missing information reconstruction of remote sensing imagery employing temporal-spatial-spectral deep feature learning[D]. Wuhan: Wuhan University, 2019.
|
[5] |
Dong F, Chen Z, Wang J. A new level set method for inhomogeneous image segmentation[J]. Image and Vision Computing, 2013, 31(10):809-822.
doi: 10.1016/j.imavis.2013.08.003
url: https://linkinghub.elsevier.com/retrieve/pii/S0262885613001297
|
[6] |
Zhang Y, Fan Y, Xu M. A background-purification-based framework for anomaly target detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1238-1242.
doi: 10.1109/LGRS.8859
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8859
|
[7] |
Wang L, Wang Y, Zhao Y, et al. Classification of remotely sensed images using an ensemble of improved convolutional network[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(5):930-934.
doi: 10.1109/LGRS.2020.2988934
url: https://ieeexplore.ieee.org/document/9086521/
|
[8] |
李梅菊, 祁清. 数字图像修复技术综述[J]. 信息通信, 2016, 29(2):130-131.
|
[8] |
Li M J, Qi Q. Overview of digital image restoration technology[J]. Information & Communications, 2016, 29(2):130-131.
|
[9] |
赵露露, 沈玲, 洪日昌. 图像修复研究进展综述[J]. 计算机科学, 2021, 48(3):14-26.
doi: 10.11896/jsjkx.210100048
|
[9] |
Zhao L L, Shen L, Hong R C. Survey on image inpainting research progress[J]. Computer Science, 2021, 48(3):14-26.
|
[10] |
王海涌, 李海洋, 高雪娇. 基于结构嵌入的图像修复方法研究[J]. 计算机工程与应用, 2021, 57(22):241-246.
doi: 10.3778/j.issn.1002-8331.2007-0279
|
[10] |
Wang H Y, Li H Y, Gao X J. Research on image restoration method based on structure embedding[J]. Computer Engineering and Applications, 2021, 57(22):241-246.
doi: 10.3778/j.issn.1002-8331.2007-0279
|
[11] |
周先春, 徐燕. 基于结构相关性的自适应图像修复[J]. 计算机科学, 2020, 47(4):131-135.
doi: 10.11896/jsjkx.190300149
|
[11] |
Zhou X C, Xu Y. Adaptive image inpainting based on structural correlation[J]. Computer Science, 2020, 47(4):131-135.
|
[12] |
Shen J, Chan T F. Mathematical models for local nontexture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002, 62(3):1019-1043.
doi: 10.1137/S0036139900368844
url: http://epubs.siam.org/doi/10.1137/S0036139900368844
|
[13] |
张桂梅, 李艳兵. 结合纹理结构的分数阶TV模型的图像修复[J]. 中国图象图形学报, 2019, 24(5):700-713.
|
[13] |
Zhang G M, Li Y B. Image inpainting of fractional TV model combined with texture structure[J]. Journal of Image and Graphics, 2019, 24(5):700-713.
|
[14] |
Criminisi A, Pérez P, Toyama K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2004, 13(9):1200-1212.
doi: 10.1109/TIP.2004.833105
url: http://ieeexplore.ieee.org/document/1323101/
|
[15] |
Barnes C, Shechtman E, Finkelstein A, et al. PatchMatch:A randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3):24-34.
|
[16] |
Pathak D, Krhenbühl P, Donahue J, et al. Context encoders:Feature learning by inpainting[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:2536-2544.
|
[17] |
徐慧铭, 程海, 姜焕德, 等. 基于深度学习的图像修复方法研究[J]. 黑龙江大学自然科学学报, 2022, 39(1):114-120.
|
[17] |
Xu H M, Cheng H, Jiang H D, et al. Research on image restoration methods based on deep leaming[J]. Journal of Natural Science of Heilongjiang University, 2022, 39(1):114-120.
|
[18] |
Zhang H, Goodfellow I, Metaxas D, et al. Self-attention generative adversarial networks[EB/OL]. 2018:arXiv:1805.08318. https://arxiv.org/abs/1805.08318.pdf.
url: https://arxiv.org/abs/1805.08318.pdf
|
[19] |
Wang N, Li J, Zhang L, et al. MUSICAL:Multi-scale image contextual attention learning for inpainting[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence.2019,Macao,China.ACM, 2019:3748-3754.
|
[20] |
Zeng Y, Fu J, Chao H, et al. Aggregated contextual transformations for high-resolution image inpainting[J]. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(7):3266-3280.
doi: 10.1109/TVCG.2022.3156949
url: https://ieeexplore.ieee.org/document/9729564/
|
[21] |
刘强, 张道畅. 结合SENet的密集卷积生成对抗网络图像修复方法[J]. 小型微型计算机系统, 2022, 43(5):1056-1060.
|
[21] |
Liu Q, Zhang D C. Dense convolution generative adversarial network image inpainting method with SENet[J]. Journal of Chinese Computer Systems, 2022, 43(5):1056-1060.
|
[22] |
唐骞. 基于对抗学习的图像修复[J]. 计算机产品与流通, 2019(1):210.
|
[22] |
Tang Q. Image restoration based on antagonistic learning[J]. Computer Products and Circulation, 2019(1):210.
|
[23] |
孙劲光, 杨忠伟, 黄胜. 全局与局部属性一致的图像修复模型[J]. 中国图象图形学报, 2020, 25(12):2505-2516.
|
[23] |
Sun J G, Yang Z W, Huang S. Image inpainting model with consistent global and local attributes[J]. Journal of Image and Graphics, 2020, 25(12):2505-2516.
|
[24] |
林竹, 王敏. 基于新编码器和相似度约束的图像修复[J]. 计算机系统应用, 2021, 30(1):122-128.
|
[24] |
Lin Z, Wang M. Image inpainting based on new encoder and similarity constraint[J]. Computer Systems & Applications, 2021, 30(1):122-128.
|
[25] |
Yu J, Lin Z, Yang J, et al. Generative image inpainting with contextual attention[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:5505-5514.
|
[26] |
Nazeri K, Ng E, Joseph T, et al. EdgeConnect:Generative image inpainting with adversarial edge learning[EB/OL]. 2019:arXiv:1901.00212. https://arxiv.org/abs/1901.00212.pdf.
url: https://arxiv.org/abs/1901.00212.pdf
|
[27] |
Liu H, Jiang B, Xiao Y, et al. Coherent semantic attention for image inpainting[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).IEEE, 2019:4169-4178.
|
[28] |
Wu H, Zhou J, Li Y. Deep generative model for image inpainting with local binary pattern learning and spatial attention[C]// IEEE Transactions on Multimedia.IEEE, 2021:4016-4027.
|
[29] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
|
[30] |
Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2017:5967-5976.
|
[31] |
Maggiori E, Tarabalka Y, Charpiat G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]// 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).IEEE, 2017:3226-3229.
|
[32] |
Zhou B, Lapedriza A, Khosla A, et al. Places:A 10 million image database for scene recognition[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2018:1452-1464.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|