Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 193-200     DOI: 10.6046/zrzyyg.2023164
|
BDANet-based assessment of building damage from earthquake disasters
ZHAO Jinling1(), HUANG Jian1, LIANG Zijun1, ZHAO Xuedan1, JIN Tao1, GE Hanghang1, WEI Xiaoyan3, SHAO Yuanzheng2
1. Data Company of Xinjiang Oilfield Company, Karamay 834000, China
2. Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China
3. Yunnan Provincial Archives of Surveying and Mapping (Yunnan Provincial Geomatics Centre), Kunming 650034, China
Download: PDF(4785 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The rapid assessment of building damage following destructive earthquakes serves as a critical foundation for decision-making and technical guarantee in post-earthquake scientific evaluations, holding great significance in humanitarian aid and emergency response. This study aims to overcome the challenge in rapidly quantifying the number of buildings affected. Considering that most existing post-earthquake building damage assessments based on remote sensing images rely on pre- and post-disaster image segmentation, this study, by using the U-Net deep convolutional neural network as the main model, introduced a three-stage convolutional neural network for building damage assessment (BDANet) framework that integrates assessment and prediction for post-earthquake building damage information. First, the encoder-decoder network structure of U-Net was used to extract building location information. Second, building damage was assessed using pre- and post-disaster images to localize and grade damage in the image segmentation results. Finally, the number of buildings damaged at various levels was predicted to support post-disaster rescue and reconstruction efforts. The study evaluated and quantified the levels of post-earthquake building damage in the M7.1 earthquake in Morelos State, central Mexico in 2017 and the M7.8 earthquake in Türkiye in 2023, confirming the accuracy and reliability of the proposed method. The experimental findings provide timely and precise data and technical support for post-disaster risk assessment.

Keywords remote sensing image      earthquake disaster      building damage      damage assessment      U-Net     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinling ZHAO
Jian HUANG
Zijun LIANG
Xuedan ZHAO
Tao JIN
Hanghang GE
Xiaoyan WEI
Yuanzheng SHAO
Cite this article:   
Jinling ZHAO,Jian HUANG,Zijun LIANG, et al. BDANet-based assessment of building damage from earthquake disasters[J]. Remote Sensing for Natural Resources, 2024, 36(4): 193-200.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023164     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/193
数据名称 数据来源 波段数 空间分
辨率/m
图像大
小/像素
墨西哥灾前灾后影像 xBD数据集 3 0.8 1 024×1 024
土耳其灾前灾后影像 WorldView-2 3 0.3 17 408×17 408
Tab.1  Seismic image data source information
Fig.1  Examples of partially annotated images
Fig.2  Network structure for evaluating and predicting building damage levels
Fig.3  Visualization of earthquake disaster images and annotations
建筑物提取网络 损毁等级预测网络
网络层 特征图尺寸 卷积核 网络层 特征图大小 网络层 特征图尺寸 卷积核
灾前图像输入 1 024×1 024×3 - 灾前图像输入 1 024×1 024×3 灾后图像输入 1 024×1 024×3 -
conv1-1 512×512×64 5×5 conv2-1 512×512×64 conv3-1 512×512×64 5×5
conv1-2 256×256×256 3×3 conv2-2 256×256×256 conv3-2 256×256×256 3×3
conv1-3 128×128×512 3×3 conv2-3 128×128×512 conv3-3 128×128×512 3×3
conv1-4 64×64×1 024 3×3 conv2-4 64×64×1 024 conv3-4 64×64×1 024 3×3
conv1-5 32×32×2 048 3×3 conv2-5 32×32×2 048 conv3-5 32×32×2 048 3×3
deconv1-1 64×64×1 024 3×3 deconv2-1 64×64×1 024 deconv3-1 64×64×1 024 3×3
deconv1-2 128×128×512 3×3 deconv2-2 128×128×512 deconv3-2 128×128×512 3×3
deconv1-3 256×256×192 3×3 deconv2-3 256×256×192 deconv3-3 256×256×192 3×3
deconv1-4 512×512×32 3×3 deconv2-4 512×512×32 deconv3-4 512×512×64 3×3
输出 1 024×1 024×1 - - - 输出 1 024×1 024×5 -
Tab.2  Model parameter
Tab.3  Assessment results of building damage
方法 等级 数据1 数据2 数据3 数据4
U-Net 一般损毁等级 147 35 50 43
较重损毁等级 0 0 0 0
严重损毁等级 0 0 1 1
特别严重损毁等级 0 0 2 2
BDANet 一般损毁等级 135 44 48 50
较重损毁等级 12 0 2 0
严重损毁等级 1 0 3 3
特别严重损毁等级 0 0 0 2
Tab.4  Statistics of experimental results
[1] He Y, Wang J, Liao C, et al. MS4D-net:Multitask-based semi-supervised semantic segmentation framework with perturbed dual mean teachers for building damage assessment from high-resolution remote sensing imagery[J]. Remote Sensing, 2023, 15(2):478.
[2] Shen Y, Zhu S, Yang T, et al. BDANet:Multiscale convolutional neural network with cross-directional attention for building damage assessment from satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5402114.
[3] 眭海刚, 刘超贤, 黄立洪, 等. 遥感技术在震后建筑物损毁检测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(7):1008-1019.
[3] Sui H G, Liu C X, Huang L H, et al. Application of remote sensing technology in earthquake-induced building damage detection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1008-1019.
[4] Yang W, Zhang X, Luo P. Transferability of convolutional neural network models for identifying damaged buildings due to earthquake[J]. Remote Sensing, 2021, 13(3):504.
[5] 吴鹏天昊, 吴立新, 沈永林, 等. 基于高分影像纹理分维变化的灾害自动识别方法[J]. 地理与地理信息科学, 2012, 28(2):9-13.
[5] Wu P T H, Wu L X, Shen Y L, et al. Disaster auto-recognition method based on HSR-image’s texture fractal monotonous change[J]. Geography and Geo-Information Science, 2012, 28(2):9-13.
[6] Cheng Q, Tian Y, Lu X, et al. Near-real-time prompt assessment for regional earthquake-induced landslides using recorded ground motions[J]. Computers & Geosciences, 2021, 149:104709.
[7] 龚燃, 刘韬. 2018年国外对地观测卫星发展综述[J]. 国际太空, 2019(2):48-55.
[7] Gong R, Liu T. Summary of the development of foreign earth observation satellites in 2018[J]. Space International, 2019(2):48-55.
[8] Tang X, Gao X, Cao H, et al. The China ZY3-03 mission:Surveying and mapping technology for high-resolution remote sensing satellites[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(3):8-17.
[9] 宫鹏. 对遥感科学应用的一点看法[J]. 遥感学报, 2019, 23(4):567-569.
[9] Gong P. Towards more extensive and deeper application of remote sensing[J]. National Remote Sensing Bulletin, 2019, 23(4):567-569.
[10] Gupta R, Goodman B, Patel N, et al. Creating xBD:A dataset for assessing building damage from satellite imagery[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Re-cognition Workshops.IEEE, 2019:10-17.
[11] Faisal A, Khan H. Application of GIS and remote sensing in disaster management:A critical review of flood management[C]// International Conference on Disaster Risk Mitigation. 2018.
[12] Song D, Tan X, Wang B, et al. Integration of super-pixel segmentation and deep-learning methods for evaluating earthquake-da-maged buildings using single-phase remote sensing imagery[J]. International Journal of Remote Sensing, 2020, 41(3):1040-1066.
[13] Chen C, Fu J, Gai Y, et al. Damaged bridges over water:Using high-spatial-resolution remote-sensing images for recognition,detection,and assessment[J]. IEEE Geoscience and Remote Sensing Magazine, 2018, 6(3):69-85.
[14] Yeom J, Han Y, Chang A, et al. Hurricane building damage assessment using post-disaster UAV data[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan.IEEE, 2019:9867-9870.
[15] Tong X, Hong Z, Liu S, et al. Building-damage detection using pre- and post-seismic high-resolution satellite stereo imagery:A case study of the May 2008 Wenchuan earthquake[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 68:13-27.
[16] Dou M, Chen J, Chen D, et al. Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images[J]. Future Generation Computer Systems, 2014, 37:367-377.
[17] Liu S, Marinelli D, Bruzzone L, et al. A review of change detection in multitemporal hyperspectral images:Current techniques,applications,and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):140-158.
[18] Khan S H, He X, Porikli F, et al. Forest change detection in incomplete satellite images with deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5407-5423.
[19] Wang Q, Yuan Z, Du Q, et al. GETNET:A general end-to-end 2-D CNN framework for hyperspectral image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):3-13.
[20] Zhan Y, Fu K, Yan M, et al. Change detection based on deep Siamese convolutional network for optical aerial images[J]. IEEE Geo-science and Remote Sensing Letters, 2017, 14(10):1845-1849.
[21] Gao F, Dong J, Li B, et al. Automatic change detection in synthetic aperture radar images based on PCANet[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12):1792-1796.
[22] Myint S W, Yuan M, Cerveny R S, et al. Categorizing natural disaster damage assessment using satellite-based geospatial techniques[J]. Natural Hazards and Earth System Sciences, 2008, 8(4):707-719.
[23] Ma H, Liu Y, Ren Y, et al. Improved CNN classification method for groups of buildings damaged by earthquake,based on high resolution remote sensing images[J]. Remote Sensing, 2020, 12(2):260.
[24] Nie Y, Zeng Q, Jiao J. Building damage assessment from post-event polsar image based on opce and template matching[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.Yokohama,Japan.IEEE, 2019:9402-9405.
[25] Bialas J, Oommen T, Rebbapragada U, et al. Object-based classification of earthquake damage from high-resolution optical imagery using machine learning[J]. Journal of Applied Remote Sensing, 2016, 10(3):036025.
[26] Cooner A J, Shao Y, Campbell J B. Detection of urban damage using remote sensing and machine learning algorithms:Revisiting the 2010 Haiti earthquake[J]. Remote Sensing, 2016, 8(10):868.
[27] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.
[28] Xu J Z, Lu W, Li Z, et al. Building damage detection in satellite imagery using convolutional neural networks[J/OL]. arXiv, 2019(2019-10-14)[2023-09-28]. https://arxiv.org/abs/1910.06444.
url: https://arxiv.org/abs/1910.06444
[29] Weber E, Kané H. Building disaster damage assessment in satellite imagery with multi-temporal fusion[J/OL]. arXiv, 2020 (2020-04-12)[2023-09-28]. https://arxiv.org/abs/2004.05525.
url: https://arxiv.org/abs/2004.05525
[30] Hao H, Baireddy S, Bartusiak E R, et al. An attention-based system for damage assessment using satellite imagery[C]// IGARSS 2021 IEEE International Geoscience and Remote Sensing Symposium.Brussels,Belgium.IEEE, 2021:4396-4399.
[31] Gupta R, Hosfelt R, Sajeev S, et al. xBD:A dataset for assessing building damage from satellite imagery[J/OL]. arXiv, 2019 (2019-10-14)[2023-09-28]. https://arxiv.org/abs/1911.09296.
url: https://arxiv.org/abs/1911.09296
[32] Yun S, Han D, Chun S, et al. CutMix:Regularization strategy to train strong classifiers with localizable features[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South).IEEE, 2019:6022-6031.
[33] Sepúlveda J, Velastın S A. F1 score assesment of Gaussian mixture background subtraction algorithms using the MuHAVi dataset[C]// 6th International Conference on Imaging for Crime Prevention and Detection (ICDP-15).London.London:IET, 2015:1-6.
[34] Pereira R B, Plastino A, Zadrozny B, et al. Correlation analysis of performance measures for multi-label classification[J]. Information Processing & Management, 2018, 54(3):359-369.
[1] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[2] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[3] TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings[J]. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
[4] YU Miao, JING Hongbo, WANG Xiang, LI Xingjiu. Multi-directional target detection based on depth features[J]. Remote Sensing for Natural Resources, 2024, 36(3): 267-271.
[5] WEN Quan, LI Lu, XIONG Li, DU Lei, LIU Qingjie, WEN Qi. A review of water body extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3): 57-71.
[6] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[7] SONG Shuangshuang, XIAO Kaifei, LIU Zhaohua, ZENG Zhaoliang. A YOLOv5-based target detection method using high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 50-59.
[8] ZHAO Binru, NIU Siwen, WANG Liyan, YANG Xiaotong, JIAO Hongbo, WANG Zike. An intelligent color enhancement method for high-resolution remote sensing images of the coastal zone of an island[J]. Remote Sensing for Natural Resources, 2024, 36(2): 70-79.
[9] LI Wanyue, LOU Debo, WANG Chenghui, LIU Huan, ZHANG Changqing, FAN Yinglin, DU Xiaochuan. A granitic pegmatite information extraction method based on improved U-Net[J]. Remote Sensing for Natural Resources, 2024, 36(2): 89-96.
[10] ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
[11] LIN Dan, LI Qiucen, CHEN Zhikui, ZHONG Fangming, LI Lifang. Research advances and challenges in multi-label classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 10-20.
[12] LIU Yujia, XIE Shizhe, DU Yang, YAN Jin, NAN Yanyun, WEN Zhongkai. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1): 58-66.
[13] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[14] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[15] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech