Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 97-104     DOI: 10.6046/zrzyyg.2023026
|
An ICM-based adaptive pansharpening algorithm for hyperspectral images
ZHAO Heting1(), LI Xiaojun1,2,3(), XU Xinyu1, GAI Junfei1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(7456 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Considering spectral distortion and insufficient texture details in the pansharpening of hyperspectral images, this study proposed an adaptive pansharpening algorithm for hyperspectral images based on the intersecting cortical model (ICM) for image segmentation. First, hyperspectral images were matched and fused with multispectral images with similar spatial resolution. Then, the matching and fusion results were fused with high-resolution panchromatic images, obtaining the fusion results possessing both the high spatial resolution of panchromatic images and the spectral resolution of hyperspectral images. Moreover, the grey wolf optimizer (GWO) was employed in sharpening fusion to adaptively optimize ICM parameters, generating the optimal irregular segmentation regions, thus providing more accurate and comprehensive details and spectral information for hyperspectral images. Finally, experiments were conducted on the proposed algorithm using two hyperspectral datasets from the ZY-1 02D satellite. The experimental results demonstrate that the proposed algorithm manifested the optimal performance in the evaluation indices of spatial details and spectral information, substantiating its effectiveness.

Keywords pansharpening      intersecting cortical model      hyperspectral image      grey wolf optimizer      remote sensing image fusion     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Heting ZHAO
Xiaojun LI
Xinyu XU
Junfei GAI
Cite this article:   
Heting ZHAO,Xiaojun LI,Xinyu XU, et al. An ICM-based adaptive pansharpening algorithm for hyperspectral images[J]. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023026     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/97
Fig.1  Neural model of ICM
Fig.2  Schematic diagram of algorithm flow
Fig.3  Process of ICM parameter optimization
Fig.4  Pansharpening results of Liujiaxia mountain dataset
Fig.5  Pansharpening results of Lanzhou City dataset
方法 RMSE PSNR/dB ERGAS SSIM DD SAM/(°)
本文方法 20.009 7 30.177 6 0.451 4 0.608 8 8.602 3 2.291 6
GS 32.571 1 21.565 7 0.815 6 0.577 1 26.195 0 2.433 0
PCA 32.249 5 21.650 8 0.810 0 0.579 5 25.912 7 2.413 0
Brovey 34.867 1 20.970 2 0.854 4 0.568 3 28.263 1 2.412 2
IHS 40.792 3 18.978 6 1.054 0 0.516 4 33.807 7 2.864 0
ATWT 22.164 7 24.803 8 0.626 4 0.587 3 17.033 3 2.635 9
HPF 23.479 3 24.319 2 0.652 9 0.569 7 18.144 1 2.293 1
SFIM 22.284 9 24.761 2 0.629 2 0.572 8 17.070 9 2.295 1
BDSD-PC 29.697 2 22.400 5 1.502 4 0.484 9 22.725 8 4.139 5
Tab.1  Comparison results of Liujiaxia mountain datasets
方法 RMSE PSNR/dB ERGAS SSIM DD SAM/(°)
本文方法 49.055 6 19.191 1 1.717 0 0.599 7 35.245 5 4.780 3
GS 65.213 0 16.764 2 1.880 6 0.459 9 52.089 3 4.972 8
PCA 64.608 2 16.845 4 1.875 0 0.462 5 51.600 5 4.948 4
Brovey 57.400 8 17.895 1 1.799 8 0.496 3 45.718 0 4.934 3
IHS 72.438 5 15.347 1 2.099 2 0.426 6 57.988 8 5.358 0
ATWT 55.754 9 18.100 8 1.793 8 0.472 8 44.263 7 5.280 2
HPF 57.058 7 17.903 9 1.807 8 0.465 9 45.314 7 4.901 8
SFIM 56.417 8 18.001 4 1.801 0 0.468 3 44.791 7 4.913 1
BDSD-PC 50.277 3 18.821 6 1.765 3 0.455 9 39.718 2 5.437 6
Tab.2  Comparison results of Lanzhou City datasets
[1] 洪科. 基于超像素分割的RGB与高光谱图像融合[J]. 电子技术与软件工程, 2020(3):74-76.
[1] Hong K. Fusion of RGB and hyperspectral images based on super-pixel segmentation[J]. Electronic Technology & Software Engineering, 2020 (3):74-76.
[2] Ren K, Sun W, Meng X, et al. Fusing China GF-5 hyperspectral data with GF-1,GF-2 and Sentinel-2A multispectral data:Which methods should be used[J]. Remote Sensing, 2020, 12(5):882.
[3] 张立福, 赵晓阳, 孙雪剑, 等. 高分五号高光谱数据融合方法比较[J]. 遥感学报, 2022, 26(4):632-645.
[3] Zhang L F, Zhao X Y, Sun X J, et al. Comparison of fusion methods on GF-5 hyperspectral data[J]. National Remote Sensing Bulletin, 2022, 26(4):632-645.
[4] Vivone G. Robust band-dependent spatial-detail approaches for panchromatic sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6421-6433.
[5] Restaino R, Vivone G, Dalla Mura M, et al. Fusion of multispectral and panchromatic images based on morphological operators[J]. IEEE Transactions on Image Processing, 2016, 25(6):2882-2895.
doi: 10.1109/TIP.2016.2556944 pmid: 28113904
[6] Vivone G, Restaino R, Chanussot J. A bayesian procedure for full-resolution quality assessment of pansharpened products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4820-4834.
[7] Vivone G, Restaino R, Mura M D, et al. Contrast and error-based fusion schemes for multispectral image pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5):930-934.
[8] Vivone G. Multispectral and hyperspectral image fusion in remote sensing:A survey[J]. Information Fusion, 2023, 89:405-417.
[9] Restaino R, Vivone G, Addesso P, et al. Hyperspectral sharpening approaches using satellite multiplatform data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1):578-596.
[10] Wady S M A, Bentoutou Y, Bengermikh A, et al. A new IHS and wavelet based pansharpening algorithm for high spatial resolution satellite imagery[J]. Advances in Space Research, 2020, 66(7):1507-1521.
[11] Ghadjati M, Moussaoui A, Boukharouba A. A novel iterative PCA-based pansharpening method[J]. Remote Sensing Letters, 2019, 10(3):264-273.
doi: 10.1080/2150704X.2018.1547443
[12] Aiazzi B, Baronti S, Selva M. Improving component substitution pansharpening through multivariate regression of MS + Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3230-3239.
[13] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1):1-14.doi:10.6046/zrzyyg.2021433.
[13] Hu J W, Wang Z P, Hu P. A review of pansharpening based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1):1-14.doi:10.6046/zrzyyg.2021433.
[14] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
[14] Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.
[15] Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via stimulus-evoked oscillations:Experimental results from cat visual cortex and functional implications from a network model[C]// International 1989 Joint Conference on Neural Networks.IEEE, 2002:723-730.
[16] 黄陈建, 戴文战. 基于PCNN图像分割的医学图像融合算法[J]. 光电子·激光, 2022, 33(1):37-44.
[16] Huang C J, Dai W Z. Medical image fusion algorithm based on PCNN image segmentation[J]. Journal of Optoelectronics·Laser, 2022, 33(1):37-44.
[17] 李小军, 闫浩文, 杨树文, 等. 一种多光谱遥感影像与航拍影像融合算法[J]. 遥感信息, 2019, 34(4):11-15.
[17] Li X J, Yan H W, Yang S W, et al. A fusion algorithm of multispectral remote sensing image and aerial image[J]. Remote Sensing Information, 2019, 34(4):11-15.
[18] 张新明, 涂强, 康强, 等. 双模狩猎的灰狼优化算法在多阈值图像分割中应用[J]. 山西大学学报(自然科学版), 2016, 39(3):378-385.
[18] Zhang X M, Tu Q, Kang Q, et al. Grey wolf optimization algorithm with double-hunting modes and its application to multi-threshold image segmentation[J]. Journal of Shanxi University (Natural Science Edition), 2016, 39(3):378-385.
[19] Wang Q, Zhang F, Li X. Optimal clustering framework for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5910-5922.
[20] Li S, Dian R, Fang L, et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization[J]. IEEE Transactions on Image Processing, 2018, 27(8):4118-4130.
[21] Chen Z, Pu H Y, Wang B, et al. Fusion of hyperspectral and multispectral images:A novel framework based on generalization of pan-sharpening methods[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8):1418-1422.
[22] Lu H, Qiao D, Li Y, et al. Fusion of China ZY-1 02D hyperspectral data and multispectral data:Which methods should be used[J]. Remote Sensing, 2021, 13(12):2354.
[1] CAO Delong, LIN Zhen, TANG Tingyuan, LI Chuyu, WANG Xiaorui. Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis[J]. Remote Sensing for Natural Resources, 2023, 35(4): 34-42.
[2] LI Lei, SUN Xiyan, JI Yuanfa, FU Wentao. Hyperspectral image classification based on superpixel segmentation and extended multi-attribute profiles[J]. Remote Sensing for Natural Resources, 2023, 35(4): 114-121.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[5] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[6] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[7] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[8] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[11] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[12] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[13] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[14] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[15] Xiaolu LIAO, Jia LIU, Xingxia ZHOU. Feature extraction and classification of hyperspectral image with ground-sky synchronization test[J]. Remote Sensing for Land & Resources, 2019, 31(3): 65-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech