Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 124-134     DOI: 10.6046/zrzyyg.2023166
|
Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis
ZHANG Dongyun1(), WU Tianjun2, LI Manjia1, GUO Yifei1, LUO Jiancheng1,3(), DONG Wen1
1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences,Beijing 100101, China
2. School of Land Engineering, Chang’an University, Xi’an 710064, China
3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(5680 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The rapid survey and accurate mapping of the spatial distribution of crops using remote sensing are fundamental to modern precision agriculture. However, limitations in the acquisition, processing, and analysis of remote sensing images impact the mapping accuracy of traditional crop planting structures. Therefore, there is an urgent need to conduct spatial modeling and feature analysis for the uncertainty in crop classification. Using the Ningxia Yellow River irrigation area as a trial area and farmland parcels as the basic spatial units, this study classified crops on a parcel scale utilizing multi-source remote sensing data and machine learning algorithms. Then, an uncertainty calculation model was constructed based on mixed entropy, yielding the spatial distribution of the uncertainty of crop types in farmland parcels. Afterward, multi-source auxiliary data were employed to build a regression model for the uncertainty, and the potential impacts of related geographical variables on the uncertainty were explored. The experiment results indicate that 1.49 million vector units were constructed for the farmland parcels during the farmland extraction and classification session, yielding an overall crop classification accuracy of 0.80. The mapping results aligned well with the actual agricultural management units, and the classification results proved more better than the traditional pixel-based methods. The uncertainty in the parcel-scale crop classification was generally lower, with significant differences among crop types. The uncertainty was low for rice, vegetable plots, and alfalfa, relatively higher for wheat of single- and double-cropping patterns, and moderate for maize. The uncertainty in parcel-scale crop classification is influenced by various environmental factors such as planting structure and resource conditions, exhibiting the most significant correlations with crop type and water accessibility.

Keywords remote sensing      crop classification      farmland parcel      uncertainty      machine learning      hybrid entropy     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dongyun ZHANG
Tianjun WU
Manjia LI
Yifei GUO
Jiancheng LUO
Wen DONG
Cite this article:   
Dongyun ZHANG,Tianjun WU,Manjia LI, et al. Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis[J]. Remote Sensing for Natural Resources, 2024, 36(4): 124-134.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023166     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/124
Fig.1  Overall flow chart of the research method in this paper
Fig.2  Machine learning networks for farmland boundary extraction and crop type recognition
Fig.3  Location and view of Google Earth image of the study area
Fig.4  Extraction effects of cropland-parcels in the study area
Fig.5  Crop classification results of Yellow River Irrigation Area of Ningxia in 2020
Fig.6  Calculation results of hybrid entropy of crop classification on farmland-parcel scale in the study area
Fig.7  Probability density curve of uncertainty distribution of each crop type at the farmland-parcel scale
农作物
类型
混合熵均值 隶属度均值 F1 总体分
类精度
由低到
高排序
由高到
低排序
由高到
低排序
水稻 1.03 2 0.83 3 0.89 1 0.80
小麦单种 1.93 7 0.67 7 0.68 6
菜地 0.92 1 0.85 1 0.84 3
玉米 1.37 5 0.81 4 0.82 4
小麦复种 1.92 6 0.69 6 0.65 7
果园 1.29 4 0.79 5 0.86 2
苜蓿 1.04 3 0.85 2 0.79 5
Tab.1  Comparative analysis of uncertainty of each crop type at the farmland-parcel scale
Fig.8  Scatterplot of uncertainty and maximum membership of major crop classifications in the study area
Fig.9  Distribution of membership values of the validation sample land-parcels to each crop type in the study area
类型 变量 特征重要性 排名
种植结构 作物类型 0.27 1
地块形态 地块面积 0.10 7
地块周长 0.08 8
地块形状指数 0.14 3
样本特征 样本密度1 km 0.04 11
样本密度2.5 km 0.06 9
样本密度5 km 0.13 6
环境与农业
管理条件
灌溉渠网密度 0.14 4
交通路网密度 0.14 5
居民点密度 0.04 10
与水渠的距离 0.16 2
MSE 0.28 R2 0.68
Tab.2  Feature importance of random forest regression model in modeling uncertainty of crop classification
Fig.10  Mean NDVI curves of rice land-parcels with different uncertainty levels
[1] Weiss M, Jacob F, Duveiller G. Remote sensing for agricultural applications:A meta-review[J]. Remote Sensing of Environment, 2020, 236:111402.
[2] 吴炳方, 张淼, 曾红伟, 等. 大数据时代的农情监测与预警[J]. 遥感学报, 2016, 20(5):1027-1037.
[2] Wu B F, Zhang M, Zeng H W, et al. Agricultural monitoring and early warning in the era of big data[J]. Journal of Remote Sensing, 2016, 20(5):1027-1037.
[3] Mitchell P J, Downie A L, Diesing M. How good is my map? A tool for semi-automated thematic mapping and spatially explicit confidence assessment[J]. Environmental Modelling and Software, 2018, 108:111-122.
[4] Olofsson P, Foody G M, Herold M, et al. Good practices for estimating area and assessing accuracy of land change[J]. Remote Sensing of Environment, 2014, 148:42-57.
[5] 陈焕南, 林红燕, 邢海花. 遥感影像数据分类的不确定性分析及其处理方法综述[J]. 现代计算机, 2021, 27(31):33-39.
[5] Chen H N, Lin H Y, Xing H H. Review of uncertainty analysis and processing methods of remote sensing image data classification[J]. Modern Computer, 2021, 27(31):33-39.
[6] Steele B M, Winne J C, Redmond R L. Estimation and mapping of misclassification probabilities for thematic land cover maps[J]. Remote Sensing of Environment, 1998, 66(2):192-202.
[7] Liu J J, Li Z, Qiao Y L, et al. A new method for cross-calibration of two satellite sensors[J]. International Journal of Remote Sensing, 2004, 25(23):5267-5281.
[8] Comber A, Fisher P, Brunsdon C, et al. Spatial analysis of remote sensing image classification accuracy[J]. Remote Sensing of Environment, 2012, 127:237-246.
[9] Yu Q, Gong P, Tian Y Q, et al. Factors affecting spatial variation of classification uncertainty in an image object-based vegetation mapping[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(8):1007-1018.
[10] 柏延臣, 王劲峰. 遥感数据专题分类不确定性评价研究:进展、问题与展望[J]. 地球科学进展, 2005, 20(11):1218-1225.
doi: 10.11867/j.issn.1001-8166.2005.11.1218
[10] Bo Y C, Wang J F. Assessment on uncertainty in remotely sensed data classification:Progresses,problems and prospects[J]. Advance in Earth Sciences, 2005, 20(11):1218-1225.
[11] 郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
[11] Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
[12] Lyons M B, Keith D A, Phinn S R, et al. A comparison of resampling methods for remote sensing classification and accuracy assessment[J]. Remote Sensing of Environment, 2018, 208:145-153.
[13] Goodchild M F, Sun G, Yang S. Development and test of an error model for categorical data[J]. International Journal of Geographical Information Systems, 1992, 6(2):87-103.
[14] Brown K M, Foody G M, Atkinson P M. Estimating per-pixel thematic uncertainty in remote sensing classifications[J]. International Journal of Remote Sensing, 2009, 30(1):209-229.
[15] Comber A J. Geographically weighted methods for estimating local surfaces of overall,user and producer accuracies[J]. Remote Sensing Letters, 2013, 4(4):373-380.
[16] Khatami R, Mountrakis G, Stehman S V. Mapping per-pixel predicted accuracy of classified remote sensing images[J]. Remote Sen-sing of Environment, 2017, 191:156-167.
[17] Immitzer M, Vuolo F, Atzberger C. First experience with sentinel-2 data for crop and tree species classifications in central Europe[J]. Remote Sensing, 2016, 8(3):166.
[18] 孙营伟. 复杂成像条件下地块级作物种植结构遥感制图研究[D]. 北京: 中国科学院大学, 2020.
[18] Sun Y W. Study on remote sensing mapping of plot-level crop planting structure under complex imaging conditions[D]. Beijing: University of Chinese Academy of Sciences, 2020.
[19] Liu Y, Cheng M M, Hu X, et al. Richer convolutional features for edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8):1939-1946.
doi: 10.1109/TPAMI.2018.2878849 pmid: 30387723
[20] 刘巍. 多源遥感协同的西南山地区耕地信息提取方法研究[D]. 北京: 中国科学院大学, 2021.
[20] Liu W. Study on extraction method of cultivated land information in southwest mountainous area by multi-source remote sensing colla-boration[D]. Beijing: University of Chinese Academy of Sciences, 2021.
[21] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[22] 徐慧. 遥感影像不确定性对分类结果可靠性影响模式研究[D]. 武汉: 武汉大学, 2020.
[22] Xu H. Exploration of the influence model remote sensing image uncertainty on classification[D]. Wuhan: Wuhan University, 2020.
[23] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3):379-423.
[24] 吴浩, 程志萍, 史文中, 等. 遥感云分类不确定性的多维混合熵模型评价[J]. 测绘科学, 2016, 41(5):50-54,176.
[24] Wu H, Cheng Z P, Shi W Z, et al. Evaluation on uncertainty of RS cloud classification based on multidimensional hybrid entropy mo-del[J]. Science of Surveying and Mapping, 2016, 41(5):50-54,176.
[25] 刘艳芳, 兰泽英, 刘洋, 等. 基于混合熵模型的遥感分类不确定性的多尺度评价方法研究[J]. 测绘学报, 2009, 38(1):82-87.
[25] Liu Y F, Lan Z Y, Liu Y, et al. Multi-scale evaluation method for uncertainty of remote sensing classification based on hybrid entropy model[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1):82-87.
[26] Smith J H, Stehman S V, Wickham J D, et al. Effects of landscape characteristics on land-cover class accuracy[J]. Remote Sensing of Environment, 2003, 84(3):342-349.
[27] Ortiz A, Oliver G. On the use of the overlapping area matrix for ima-ge segmentation evaluation:A survey and new performance measures[J]. Pattern Recognition Letters, 2006, 27(16):1916-1926.
[28] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201.
[29] Grömping U. Variable importance assessment in regression:Linear regression versus random forest[J]. The American Statistician, 2009, 63(4):308-319.
[30] Löw F, Michel U, Dech S, et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85:102-119.
[1] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[2] KANG Hui, DOU Wenzhang, HAN Lingyi, DING Ziyue, WU Liangting, HOU Lu. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model[J]. Remote Sensing for Natural Resources, 2024, 36(4): 117-123.
[3] PAN Junjie, SHEN Li, YAN Xin, NIE Xin, DONG Kuanlin. An adversarial learning-based unsupervised domain adaptation method for semantic segmentation of high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(4): 149-157.
[4] ZHAO Jinling, HUANG Jian, LIANG Zijun, ZHAO Xuedan, JIN Tao, GE Hanghang, WEI Xiaoyan, SHAO Yuanzheng. BDANet-based assessment of building damage from earthquake disasters[J]. Remote Sensing for Natural Resources, 2024, 36(4): 193-200.
[5] ZHUANG Huifu, WANG Peng, SU Yanan, ZHANG Xiang, FAN Hongdong. Dynamic monitoring of flood inundation in Zhuozhou, Hebei Province based on multi-temporal SAR data[J]. Remote Sensing for Natural Resources, 2024, 36(4): 218-228.
[6] WEI Xiao, ZHANG Lifeng, HE Yi, CAO Shengpeng, SUN Qiang, GAO Binghai. 2000-2020 spatiotemporal variations of different vegetation types in the Yellow River basin and influencing factors[J]. Remote Sensing for Natural Resources, 2024, 36(4): 229-241.
[7] ZHAO Yuling, YANG Jinzhong, SUN Weidong, YU Hao, XING Yu, CHEN Dong, MA Xinying, WANG Tixin, WANG Cong. Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management[J]. Remote Sensing for Natural Resources, 2024, 36(4): 23-30.
[8] QI Changwei, DONG Ji’en, CHENG Xu, YE Gaofeng, HE Shuyue, DAI Wei, WANG Bing. Application of ZY-1 02D hyperspectral data to altered mineral mapping and ore prospecting in desert areas along the northern margin of the Qaidam Basin[J]. Remote Sensing for Natural Resources, 2024, 36(4): 31-42.
[9] FENG Lei, WANG Yi, LI Wenji, WANG Yanzuo, ZHENG Xiangxiang, WANG Shanshan, ZHANG Ling. Development and application of 3D geological hazard identification information platform[J]. Remote Sensing for Natural Resources, 2024, 36(4): 321-327.
[10] QIU Junting, LI Jiangkun, GE Tengfei, MU Hongxu, RUI Xinmin, YANG Yunhan, YANG Yanjie. Application of multi-source remote sensing data in the exploration of sandstone-type uranium deposits: A case study of the Yingen area, Bayingebi basin[J]. Remote Sensing for Natural Resources, 2024, 36(4): 43-54.
[11] LAI Shijiu, HU Jinshan, KANG Jianrong, WANG Xiaobing. Ecological evolution of coal resource-based regions: A case study of Shanxi Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 62-74.
[12] YE Lijuan, DUAN Xiaolong, LI Ting, ZHANG Jing, ZHANG Yun, CHEN Donglei. Distribution and rehabilitation status of lands destroyed by mining: A case study of Hebei Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 75-81.
[13] LUO Zhenhai, ZHANG Chao, FENG Shaoyuan, TANG Min, LIU Rui, KONG Jiying. Advances in research on methods for optical remote sensing monitoring of soil salinization[J]. Remote Sensing for Natural Resources, 2024, 36(4): 9-22.
[14] LING Xiaolu, CHEN Chaorong, GUO Weidong, QIN Kai, ZHANG Jinlong. Comprehensive evaluation of ESA CCI soil moisture data in eastern China[J]. Remote Sensing for Natural Resources, 2024, 36(4): 92-106.
[15] SUN Xiyong, LIU Jiafeng, FAN Jinghui, ZHANG Wenkai, SHI Lijuan, QIU Yubao, ZHU Farong. Advances in research and application of remote sensing-based snow monitoring products[J]. Remote Sensing for Natural Resources, 2024, 36(3): 13-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech