Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 213-220     DOI: 10.6046/zrzyyg.2023220
|
Machine learning-based inversion of aerosol optical depth inversion from FY-4A data
CHEN Xin(), SHI Guoping()
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(4710 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to develop a machine learning algorithm based on the characteristics of AGRI data to generate an aerosol dataset with a high spatiotemporal resolution. Using aerosol data from 67 aerosol robotic network (AERONET) sites in China and its surrounding areas in 2021, this study selected data of factors such as apparent reflectance, observation angles, elevation, and MODIS surface reflectance acquired from FY-4A advanced geostationary radiation imager (AGRI)-a new generation geostationary meteorological satellite of China. Then, this study performed the inversion of aerosol optical depth (AOD) using four machine learning methods-random forest (RF), gradient boosting regression tree (GBRT), extreme gradient boosting (XGBoost), and back propagation neural network (BPNN). Using the optimal model determined based on evaluation metrics, this study achieved the AOD inversion with a spatial resolution of 4 km × 4 km based on FY-4A data. Then, this study compared the inversion results with MODIS aerosol products of roughly the same periods. The results indicate that the AOD inversion models based on the four machine learning algorithms yielded correlation coefficients (R) exceeding 0.90, mean absolute errors (MAEs) of less than 0.09, and root mean square errors (RMSE) below 0.14. This indicates that it is feasible to conduct AOD inversion using machine learning-based models. The GBRT-based model exhibited the highest inversion accuracy among the four methods, with a correlation coefficient of 0.82, MAE of 0.16, and RMSE of 0.25, as indicated by the verification results. Additionally, 47% of the inversion results fell within the expected error ranges, indicating that the results of AOD inversion from FY-4A data using the GBRT-based model were generally consistent with observed values. The comparison between the GBRT model-derived AOD inversion results and the results of MODIS aerosol products shows that the former exhibited high consistency with the latter in terms of spatial distribution, with 83.57% of grid deviations falling within the range from -1.0 to 0 and the former slightly higher than the latter.

Keywords machine learning      AOD      FY-4A/AGRI      AERONET      MODIS AOD     
ZTFLH:  TP79  
  X513  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin CHEN
Guoping SHI
Cite this article:   
Xin CHEN,Guoping SHI. Machine learning-based inversion of aerosol optical depth inversion from FY-4A data[J]. Remote Sensing for Natural Resources, 2025, 37(1): 213-220.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023220     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/213
Fig.1  Study area and site distribution
通道序号 通道类型 中心波长/μm 光谱带宽/μm 主要用途
B1 可见光与近红外 0.47 0.45~0.49 气溶胶
B2 0.65 0.55~0.75 植被
B3 0.825 0.75~0.90 植被
B4 短波红外 1.375 1.36~1.39 卷云
B5 1.61 1.58~1.64 云、雪
B6 2.25 2.1~2.35 卷云、气溶胶
B7 中波红外 3.75 3.5~4.0(高) 火点
B8 3.75 3.5~4.0(低) 地表
B9 水汽 6.25 5.8~6.7 云导风
B10 7.1 6.9~7.3 云导风
B11 长波红外 8.5 8.0~9.0 云导风、云
B12 13.5 13.2~13.8 云顶高度
Tab.1  AGRI channels
Fig.2  Importance of features
Fig.3  Scatterplot of modeling results for AOD and ground-based data for BPNN, RF, XGBoost and GBRT model
Fig.4  Scatterplot of validation results for AOD and ground-based data for BPNN, RF, XGBoost and GBRT model
时间 R MAE RMSE =EE/% >EE/% <EE/%
2022年7月 0.748 8 0.120 6 0.188 6 52 20 28
2022年10月 0.826 9 0.117 8 0.182 8 56 12 32
2023年1月 0.903 7 0.125 3 0.197 8 51 6 43
2023年4月 0.802 2 0.251 3 0.364 7 32 2 66
Tab.2  Monthly validation table
Fig.5  Comparison of the regional distribution of MODIS/Terra, Aqua/MODIS and FY-4A/AGRI products
Fig.6  Histogram of frequency differences between MODIS AOD and FY-4A AOD
[1] Mishra M K, Rathore P S, Misra A, et al. Atmospheric correction of multispectral VNIR remote sensing data:Algorithm and inter-sensor comparison ofAerosol and surface reflectance products[J]. Earth and Space Science, 2020, 7(9):e2019EA000710.
[2] Xie Y, Xue Y, Guang J, et al. Deriving a global and hourly data set of aerosol optical depth over land using data from four geostationary satellites:GOES-16,MSG-1,MSG-4,and himawari-8[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1538-1549.
[3] Sosnowski T R. Aerosols and human health:A multiscale problem[J]. Chemical Engineering Science, 2023,268:118407.
[4] Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1-/ spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1286-1298.
[5] Levy R C, Remer L A, Mattoo S, et al. Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D13):211-231.
[6] Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):557-569.
[7] Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-asia[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3180-3195.
[8] Chen Q X, Han X L, Gu Y, et al. Evaluation of MODIS,MISR,and VIIRS daily level-3 aerosol optical depth products over land[J]. Atmospheric Research, 2022,265:105810.
[9] Gao L, Chen L, Li C, et al. Evaluation and possible uncertainty source analysis of JAXA Himawari-8 aerosol optical depth product over China[J]. Atmospheric Research, 2021,248:105248.
[10] 胡秀清, 卢乃锰, 邱红. FY-1C/1D全球海上气溶胶业务反演算法研究[J]. 海洋学报, 2006, 28(2):56-65.
[10] Hu X Q, Lu N M, Qiu H. Development of aerosol retrieval algorithm over global ocean using FY-1C/1D data[J]. Acta Oceanologica Sinica, 2006, 28(2):56-65.
[11] 任通, 高玲, 李成才, 等. 利用风云2C静止卫星可见光资料反演气溶胶光学厚度[J]. 北京大学学报(自然科学版), 2011, 47(4):636-646.
[11] Ren T, Gao L, Li C C, et al. Retrieval of aerosol optical depth from Fengyun-2C geostationary satellite observation:Theory and implementation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2011, 47(4):636-646.
[12] 刘智超, 王健, 张鹏, 等. 风云三号卫星气溶胶光学厚度产品的适用性验证[J]. 环境监测管理与技术, 2023, 35(2):18-22.
[12] Liu Z C, Wang J, Zhang P, et al. Verification of aerosol optical depth observed by FY-3 satellite[J]. The Administration and Technique of Environmental Monitoring, 2023, 35(2):18-22.
[13] Saide P E, Kim J, Song C H, et al. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations[J]. Geophysical Research Letters, 2014, 41(24):9188-9196.
[14] 许梦婕. FY-4A气象卫星对京津冀地区AOD的反演方法研究[D]. 南京: 南京信息工程大学, 2021.
[14] Xu M J. Study on inversion method of AOD in Beijing-Tianjin-Hebei region by FY-4A meteorological satellite[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.
[15] Jiang X, Xue Y, Jin C, et al. A simple band ratio library (BRL) algorithm for retrieval of hourly aerosol optical depth using FY-4A AGRI geostationary satellite data[J].Remote Sensing, 2022, 14(19):4861.
[16] 陈兴峰, 郑逢杰, 郭丁, 等. 气溶胶定量遥感的机器学习方法综述[J]. 遥感学报, 2021, 25(11):2220-2233.
[16] Chen X F, Zheng F J, Guo D, et al. Review of machine learning methods for aerosol quantitative remote sensing[J]. National Remote Sensing Bulletin, 2021, 25(11):2220-2233.
[17] Ristovski K, Vucetic S, Obradovic Z. Uncertainty analysis of neural-network-based aerosol retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):409-414.
[18] Levy R C, Remer L A, Kleidman R G, et al. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land[J]. Atmospheric Chemistry and Physics, 2010, 10(21):10399-10420.
[19] Ding H, Zhao L, Liu S, et al. FY-4A/AGRI aerosol optical depth retrieval capability test and validation based on NNAeroG[J]. Remote Sensing, 2022, 14(21):5591.
[20] Yuan Q, Shen H, Li T, et al. Deep learning in environmental remote sensing:Achievements and challenges[J]. Remote Sensing of Environment, 2020,241:111716.
[21] Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning,urban,and desert dust aerosols[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D24):31333-31349.
[22] Sun Z, Zhang B, Yao Y. Improving the estimation of weighted mean temperature in China using machine learning methods[J]. Remote Sensing, 2021, 13(5):1016.
[23] 高阿芳. 基于改进随机森林的耕深预测模型研究[D]. 长春: 长春工业大学, 2022.
[23] Gao A F. Research on prediction model of tillage depth based on an improved random forest[D]. Changchun: Changchun University of Technology, 2022.
[24] Levy R C, Mattoo S, Munchak L A, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11):2989-3034.
[25] Levy R C, Munchak L A, Mattoo S, et al. Towards a long-term global aerosol optical depth record:Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance[J]. Atmospheric Measurement Techniques, 2015, 8(10):4083-4110.
[26] Sawyer V, Levy R C, Mattoo S, et al. Continuing the MODIS dark target aerosol time series with VIIRS[J]. Remote Sensing, 2020, 12(2):308.
[27] Chen Y, Fan M, Li M, et al. Himawari-8/AHI aerosol optical depth detection based on machine learning algorithm[J]. Remote Sensing, 2022, 14(13):2967.
[28] 陈岚琪. 基于GWR的郑州市域林地景观格局、气象与气溶胶光学厚度的空间关系研究[D]. 郑州: 河南农业大学, 2020.
[28] Chen L Q. Spatial relationship among forest landscape pattern,meteorology and aerosol based on GWR model in Zhengzhou City[D]. Zhengzhou: Henan Agricultural University, 2020.
[29] 杨阳, 赵娜, 岳天祥. 1980—2018年中国极端高温事件时空格局演变特征[J]. 地理科学, 2022, 42(3):536-547.
doi: 10.13249/j.cnki.sgs.2022.03.018
[29] Yang Y, Zhao N, Yue T X. Spatio-temporal variations of extreme high temperature event in China from 1980 to 2018[J]. Scientia Geographica Sinica, 2022, 42(3):536-547.
doi: 10.13249/j.cnki.sgs.2022.03.018
[30] Xue R, Ai B, Lin Y, et al. Spatial and temporal distribution of aerosol optical depth and its relationship with urbanization in Shandong Province[J]. Atmosphere, 2019, 10(3):110.
[31] Zhao C, Wang Y, Shi X, et al. Estimating the contribution of local primary emissions to particulate pollution using high-density station observations[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(3):1648-1661.
[32] Jin Q, Wei J, Yang Z L, et al. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations[J]. Atmospheric Chemistry and Physics, 2015, 15(17):9897-9915.
[1] HU Boyang, SUN Jianguo, ZHANG Qian, YANG Yunrui. Residual trend method based on regional modeling and machine learning for attribution of vegetation changes[J]. Remote Sensing for Natural Resources, 2025, 37(1): 46-53.
[2] ZHANG Dongyun, WU Tianjun, LI Manjia, GUO Yifei, LUO Jiancheng, DONG Wen. Remote sensing-based classification of crops on a farmland parcel scale and uncertainty analysis[J]. Remote Sensing for Natural Resources, 2024, 36(4): 124-134.
[3] ZHANG Chungui, PENG Jida. Air freshness monitoring technology based on meteorology and remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 163-173.
[4] WANG Yumiao, LI Sheng, DONG Chunyu, YANG Gang. Remote sensing information extraction for mangrove forests based on multi-feature parameters: A case study of Guangdong Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 95-102.
[5] HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
[6] LI Xianfeng, YUAN Zhengguo, DENG Weihua, YANG Liyuan, ZHOU Xueying, HU Lili. Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 57-65.
[7] YAN Junjie, GUO Xuexing, QU Jianhua, HAN Min. An FY-4A/AGRI cloud detection model based on the naive Bayes algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(3): 33-42.
[8] CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
[9] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[10] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
[11] Xun ZHOU, Yuebin WANG, Suhong LIU, Peixin YU, Xikai WANG. A machine learning algorithm for automatic identification of cultivated land in remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(4): 68-73.
[12] ZHANG Mingming, CHENG Dongbing, QI Jianhua, HU Jianchun, LUO Jing. Temporal and spatial distribution of aerosol optical depth in Chizhou based on satellite remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 147-155.
[13] ZHOU Jiayuan, SHI Runhe. A comparative analysis of AOD in main cities and the western region of China from 2000 to 2014 based on GIOVANNI[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 143-148.
[14] YANG Changkun, LIU Zhaoqin, WANG Chongchang, LIU Bin, PENG Man. Spatial change analysis of the coastal zone of Liaodong Bay from 2001 to 2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 150-157.
[15] FAN Dongfu, YANG Shuyun, WU Biwen, FAN Dongqing, WANG Jun, JIANG Bo, CHEN Xiaolong. Monitoring of biomass burning based on AOD[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 133-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech