Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 212-219     DOI: 10.6046/zrzyyg.2024179
|
Inversion of heavy precipitation in Hunan based on FY-3D/MWRI data
WANG Taoran1,2(), WU Ying1(), MA Jingwen1, HUANG Yuanyuan1, FU Qijia1
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Meteorological Bureau of Yiyang City, Hunan Province, Yiyang 413099, China
Download: PDF(5928 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using level-1 (L1) brightness temperature data from the Microwave Radiation Imager (MWRI) on board Fengyun-3D (FY-3D) satellite and the corresponding Level-2 (L2) precipitation products, this study established a precipitation rate inversion model for land surface heavy precipitation in Hunan Province based the polarization corrected temperature (PCT) and scatter index (SI). The proposed model was validated using individual examples. The results indicate that the precipitation rates retrieved from the L1 brightness temperature data of the FY-3D satellite were generally consistent with the results obtained from the L2 precipitation products. Compared to actual data, the retrieved precipitation rates were slightly higher in low precipitation areas but smaller in centers of high precipitation areas. The ascending orbit-based inversion model exhibited a correlation coefficient, mean absolute error (MAE), and root mean square error (RMSE) of 0.876 1, 0.771 1, and 1.151 4 mm/h, respectively. Conversely, the descending orbit-based inversion model presented a correlation coefficient, MAE, and RMSE of 0.911 3, 1.130 4, and 1.832 2 mm/h, respectively. The inversion results showed a larger precipitation distribution range than that of L2 products. Compared to the measurements at ground meteorological stations, the inversion model demonstrated higher accuracy than L2 products. This study successfully determined the distribution of land surface heavy precipitation in Hunan through inversion. The results of this study can provide a reference for investigating the relationship between microwave brightness temperature and precipitation and estimating land surface heavy precipitation.

Keywords FY-3D/MWRI      PCT-SI algorithm      heavy precipitation      precipitation rate inversion     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Taoran WANG
Ying WU
Jingwen MA
Yuanyuan HUANG
Qijia FU
Cite this article:   
Taoran WANG,Ying WU,Jingwen MA, et al. Inversion of heavy precipitation in Hunan based on FY-3D/MWRI data[J]. Remote Sensing for Natural Resources, 2025, 37(4): 212-219.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024179     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/212
Fig.1  Scatter plot of L2 products and retrieved rain rate from 1 to 10,June,2022
Fig.2  Comparison of retrieved rain rate with FY-3D satellite L2 products from 1 to 10, June, 2022
Fig.3  The rain rate obtained from the inversion of two precipitation cases fitted to the scatter plot of the L2 product
个例 数据
量/个
R MAE/
(mm·h-1)
RMSE/
(mm·h-1)
2022年6月1—10日升轨 241 3 0.876 1 0.771 1 1.151 4
2022年6月1—10日降轨 385 1 0.911 3 1.130 4 1.832 2
2022年6月18—21日升轨 374 8 0.918 7 0.822 4 1.299 5
2022年6月18—21日降轨 276 1 0.907 5 1.086 7 1.476 1
2023年4月2—4日升轨 138 8 0.929 6 1.319 7 2.117 7
2023年4月2—4日降轨 205 1 0.869 2 1.461 3 1.906 4
Tab.1  Model precision evaluation indicators
Fig.4  Comparison of retrieved rain rate with FY-3D satellite L2 products and station data from 18 to 21, June, 2022
Fig.5  Comparison of retrieved rain rate with FY-3D satellite L2 products and station data from 2 to 4, April, 2023
Fig.6  The L2 products of two precipitation cases fitted to the scatter plot of the station data (ascending orbits)
Fig.7  The rainfall intensity obtained from the inversion of two precipitation cases fitted to the scatter plot of the station data (ascending orbits)
[1] 李莹, 赵珊珊. 2001—2020年中国洪涝灾害损失与致灾危险性研究[J]. 气候变化研究进展, 2022, 18(2):154-165.
[1] Li Y, Zhao S S. Floods losses and hazards in China from 2001 to 2020[J]. Climate Change Research, 2022, 18(2):154-165.
[2] 马铮, 王国复, 张颖娴. 1961—2019年中国区域连续性暴雨过程的危险性区划[J]. 气候变化研究进展, 2022, 18(2):142-153.
[2] Ma Z, Wang G F, Zhang Y X. The risk regionalization of regional continuity rainstorm processes in China during 1961—2019[J]. Climate Change Research, 2022, 18(2):142-153.
[3] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
[3] Li X T, Shi L, Chen D Y. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area[J]. Remote Sensing for Natural Resources, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
[4] Wei X C, Min M, Li J, et al. Characteristics of strong storms at the pre-convection stage from satellite microwave sounder observations[J]. Journal of Geophysical Research:Atmospheres, 2022, 127(22):e2022JD037216.
[5] 杜方洲, 石玉立, 盛夏. 基于深度学习的TRMM降水产品降尺度研究——以中国东北地区为例[J]. 国土资源遥感, 2020, 32(4):145-153.doi:10.6046/gtzyyg.2020.04.19.
[5] Du F Z, Shi Y L, Sheng X. Research on downscaling of TRMM precipitation products based on deep learning:Exemplified by Northeast China[J]. Remote Sensing for Land and Resources, 2020, 32(4):145-153.doi:10.6046/gtzyyg.2020.04.19.
[6] Hayden L, Liu C T. Differences in the diurnal variation of precipitation estimated by spaceborne radar,passive microwave radiometer,and IMERG[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(9):e2020JD033020.
[7] Bi M M, Zou X L. Comparison of cloud/rain band structures of Typhoon Muifa (2022) revealed in FY-3E MWHS-2 observations with all-sky simulations[J]. Journal of Geophysical Research:Atmospheres, 2023, 128(23):e2023JD039410.
[8] 何会中, 崔哲虎, 程明虎, 等. TRMM卫星及其数据产品应用[J]. 气象科技, 2004, 32(1):13-18.
[8] He H Z, Cui Z H, Cheng M H, et al. TRMM satellite and application of its products[J]. Meteorological Science and Technology, 2004, 32(1):13-18.
[9] 唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4) :607-615.
[9] Tang G Q, Wan W, Zeng Z Y, et al. An overview of the global precipitation measurement (GPM) mission and it’s latest development[J]. Remote Sensing Technology and Application, 2015, 30(4):607-615.
[10] 谷松岩, 张鹏, 陈林, 等. 中国首颗降水测量卫星(风云三号G星)的探测能力概述与展望[J]. 暴雨灾害, 42(5):489-498.
[10] Gu S Y, Zhang P, Chen L, et al. 2023. Overview and prospect of the detection capability of China’s first precipitation measurement satellite FY-3G[J]. Torrential Rain and Disasters, 2023, 42(5):489-498.
[11] Spencer R W. A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates[J]. Journal of Climate and Applied Meteorology, 1986, 25(6):754-766.
[12] Spencer R W, Goodman H M, Hood R E. Precipitation retrieval over land and ocean with the SSM/I:Identification and characteristics of the scattering signal[J]. Journal of Atmospheric and Oceanic Technology, 1989, 6(2):254-273.
[13] Cecil D J, Chronis T. Polarization-corrected temperatures for 10-,19-,37-,and 89-GHz passive microwave frequencies[J]. Journal of Applied Meteorology and Climatology, 2018, 57(10):2249-2265.
[14] Grody N C. Classification of snow cover and precipitation using the special sensor microwave imager[J]. Journal of Geophysical Research:Atmospheres, 1991, 96(D4):7423-7435.
[15] Ferraro R R, Grody N C, Marks G F. Effects of surface conditions on rain identification using the DMSP-SSM/I[J]. Remote Sensing Reviews, 1994, 11(1/2/3/4):195-209.
[16] Ferraro R R, Smith E A, Berg W, et al. A screening methodology for passive microwave precipitation retrieval algorithms[J]. Journal of the Atmospheric Sciences, 1998, 55(9):1583-1600.
[17] Liu G S, Curry J A. Retrieval of precipitation from satellite microwave measurement using both emission and scattering[J]. Journal of Geophysical Research:Atmospheres, 1992, 97(D9):9959-9974.
[18] Li L, Zhu Y J, Zhao B L. Rainfall retrieval over land from satellite remote sensing (SSM/I)[J]. Chinese Science Bulletin, 1998, 43(22):1913-1917.
[19] Zhao B L, Yao Z Y, Li W B, et al. Rainfall retrieval and flooding monitoring in China using TRMM microwave imager(TMI)[J]. Journal of the Meteorological Society of Japan, 2001, 79(1B):301-315.
[20] 李万彪, 陈勇, 朱元竞, 等. 利用热带降雨测量卫星的微波成像仪观测资料反演陆地降水[J]. 气象学报, 2001, 59(5):591-601.
[20] Li W B, Chen Y, Zhu Y J, et al. Retrieval of rain over land by using TRMM/TMI measurements[J]. Acta Meteorologica Sinica, 2001, 59(5):591-601.
[21] 李世伟, 赖格英, 盛盈盈, 等. PCT-SI综合指数法反演陆面雨强[J]. 气象与环境科学, 2015, 38(2):102-107.
[21] Li S W, Lai G Y, Sheng Y Y, et al. Refutation of rainfall density over land by PCT-SI[J]. Meteorological and Environmental Sciences, 2015, 38(2):102-107.
[22] 闵爱荣, 游然, 卢乃锰, 等. TRMM卫星微波成像仪资料的陆面降水反演[J]. 热带气象学报, 2008, 24(3):265-272.
[22] Min A R, You R, Lu N M, et al. Retrieval of precipitation over land using TRMM microwave image[J]. Journal of Tropical Meteorology, 2008, 24(3):265-272.
[23] 邓欣柔, 吴莹. 基于GPM探测资料的台风降水水平结构分析[J]. 地球物理学进展, 2022, 37(5):1799-1806.
[23] Deng X R, Wu Y. Analysis of horizontal precipitation structure of typhoon area based on GPM detection data[J]. Progress in Geophysics, 2022, 37(5):1799-1806.
[24] 闵爱荣, 张翠荣, 王晓芳. 基于微波成像仪资料反演陆面降水[J]. 气象科技, 2008, 36(4):495-498.
[24] Min A R, Zhang C R, Wang X F. Retrieval of precipitation over land using microwave imagers[J]. Meteorological Science and Technology, 2008, 36(4):495-498.
[1] XU Ziyao, YANG Wu, SHI Xiaolong. Small target detection in remote sensing images based on lightweight YOLOv7-tiny[J]. Remote Sensing for Natural Resources, 2025, 37(4): 1-11.
[2] MOU Fengyun, ZHU Shirou, ZUO Lijun. Spatiotemporal evolution analysis of urban built-up areas based on impervious surface and nighttime light[J]. Remote Sensing for Natural Resources, 2025, 37(4): 108-117.
[3] LI Zhi, ZHANG Shubi, LI Minggeng, CHEN Qiang, BIAN Hefang, LI Shijin, GAO Yandong, ZHANG Yansuo, ZHANG Di. Stacking-assisted DS-InSAR method for monitoring surface deformations in complex mining areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 12-20.
[4] DUAN Yating, LEI Shaogang, LI Yuanyuan, ZHU Guoqing, WANG Liang. Positive convergence effects of subsidence basins on precipitable water vapor in semi-arid underground mining areas[J]. Remote Sensing for Natural Resources, 2025, 37(4): 131-139.
[5] YANG Hengjun, YANG Xin, ZHOU Xiong. Spatiotemporal variations of geological disaster risk and obstacle factor diagnosis: A case study of the western Sichuan region[J]. Remote Sensing for Natural Resources, 2025, 37(4): 140-151.
[6] WANG Qin, GONG Huili, CHEN Beibei, ZHOU Chaofan, ZHU Lin. Analysis of the spatiotemporal variation characteristics of regional multi-scale land subsidence[J]. Remote Sensing for Natural Resources, 2025, 37(4): 152-162.
[7] XU Yaoyao, WU Hanyu, YU Junjie, ZHU Yishu, WANG Jilong, PENG Bo. A spatial demarcation method for town areas: A case study of Xiapu County, Ningde City, Fujian[J]. Remote Sensing for Natural Resources, 2025, 37(4): 163-172.
[8] LI Lelin, WANG Wenxi, YANG Wentao, CHEN Hao, PENG Huanhua, ZHAO Qian. Gaussian mixture model and its application in remote sensing identification of industrial heat sources[J]. Remote Sensing for Natural Resources, 2025, 37(4): 173-183.
[9] MA Maonan, CHANG Liang, YU Guoqiang, ZHOU Jianwei, HAN Haihui, ZHANG Qunhui, CHEN Xiaoyan, DU Chao. Spatiotemporal changes in land use and their driving factors in the Golmud River basin from 1980 to 2020[J]. Remote Sensing for Natural Resources, 2025, 37(4): 184-193.
[10] SU Boxiong, WU Mingquan, NIU Zheng, CHEN Fang, HUANG Wenjiang. Analyzing impact of the Beijing-Guangzhou high-speed railway on cities along the Hebei section based on remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2025, 37(4): 194-203.
[11] WANG Xinshuang, ZHAO Yehe, LIU Jiange, SUN Xin, ZHANG Yongzhen, MAO Dehua. Remote sensing-based assessment of wetland restoration potential in important wetland reserves along the Silk Road[J]. Remote Sensing for Natural Resources, 2025, 37(4): 204-211.
[12] QIN Ziyi, YANG Longshan. Hyperspectral unmixing based on spectral-spatial total variation nonnegative matrix factorization with feature space augmentation[J]. Remote Sensing for Natural Resources, 2025, 37(4): 21-30.
[13] XIA Siying, LI Jingzhi, ZHENG Yujia. Changes in land-use-related carbon emissions in Xiangxi and their prediction[J]. Remote Sensing for Natural Resources, 2025, 37(4): 220-231.
[14] JIN Tingting, XI Wenfei, QIAN Tanghui, GUO Junqi, HONG Wenyu, DING Zitian, GUI Fuyu. Exploring the spatial distribution of surface deformations along the China-Laos railway based on SBAS-InSAR technology: Taking the Jinghong section as an example[J]. Remote Sensing for Natural Resources, 2025, 37(4): 232-240.
[15] WU Jianhua, KONG Xianglin, TU Haowen, GONG Zhigang, GUO Pengcheng. Design and implementation of a canoeing sport monitoring system with virtual-real interactions based on real-scene 3D[J]. Remote Sensing for Natural Resources, 2025, 37(4): 241-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech