Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 140-151     DOI: 10.6046/zrzyyg.2024119
|
Spatiotemporal variations of geological disaster risk and obstacle factor diagnosis: A case study of the western Sichuan region
YANG Hengjun1(), YANG Xin1,2(), ZHOU Xiong3
1. College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China
2. Key Laboratory of Earth Exploration and Information Techniques, Ministry of Education, Chengdu 610059, China
3. Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Science, Chengdu 610041, China
Download: PDF(5436 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Geological disasters, influenced by natural and human factors, directly threaten the safety of people’s lives and property. Exploring the spatiotemporal variations and development mechanisms of geological disaster risk can enhance disaster prevention and mitigation. This study examined 31 factors such as topography, rainfall, and social economy from the perspectives of nature and humanity. Based on the four-factor risk theory, this study investigated the variations of geological disaster risk in the western Sichuan region using methods like the analytic hierarchy process, principal component analysis, information value model, entropy weight method, and hot/cold spot analysis. Employing the obstacle degree model, this study explored the degrees of influence of various factors on geological disaster risk in the western Sichuan region. The results indicate that from 2007 to 2022, the geological disaster risk in the western Sichuan region was generally characterized by higher levels in the west and lower levels in the east. Kangding and Maerkang were the concentrated distribution areas of perennial cold spots. The area of extremely low and low risk levels increased by 8 871.1 km2 and 12 478.6 km2 respectively at growth rates of 1.056%/a and 1.485%/a respectively. The area of high and extremely high risk levels decreased by 10 127.8 km2 and 9 880.1 km2 respectively at growth rates of -0.02484 km2/a. The degrees of influence of various factors on risk levels exhibited temporal heterogeneity. The dominant obstacle factors (obstacle degree: above 5 %) were concentrated in risk and disaster prevention and mitigation indicators. Factors including rainfall, topography, and medical resources contributed significantly to geological disaster risk.

Keywords risk assessment      geological disaster      obstacle degree      hot/cold spot analysis      analytic hierarchy process     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hengjun YANG
Xin YANG
Xiong ZHOU
Cite this article:   
Hengjun YANG,Xin YANG,Xiong ZHOU. Spatiotemporal variations of geological disaster risk and obstacle factor diagnosis: A case study of the western Sichuan region[J]. Remote Sensing for Natural Resources, 2025, 37(4): 140-151.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024119     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/140
Fig.1  Schematic diagram of study area
目标层 准则层 因子层
风险
评价
危险性 高程
坡度
坡向
起伏度
地震峰值加速度
年均降雨量
地层岩性
土地利用类型
道路
水系
距断层距离
植被覆盖度
风险
评价
脆弱性 农业人口占比
第一产业占比
耕地面积占比
粮食产量
农林牧渔产值
规模以上工业企业数量
暴露性 人口数量及密度
地区生产总值
农田面积占比
建筑面积占比
林地面积占比
草地面积占比
防灾减灾能力 地方财政支出
居民人均可支配收入
每千人医院数量
每千人床位数量
每千人医生数量
每千人护士数量
每千人卫生技术人员数量
Tab.1  Geological hazard risk assessment factors
因子 分级 2007年 2012年 2017年 2022年
I W I W I W I W
高程/m [0,1 500) 0.344 0.037 0.939 0.049 0.427 0.092 0.376 0.028
[1 500,2 500) 0.346 0.960 0.416 0.366
[2 500,3 500) 0.273 0.877 0.367 0.324
[3 500,4 500) 0.134 0.696 0.264 0.233
[4 500,+∞) 0.236 0.223 0.135 0.118
坡度/(°) [0,15) 0.166 0.108 0.104 0.110 0.132 0.049 0.113 0.101
[15,25) 0.125 0.083 0.097 0.084
[25,35) 0.067 0.045 0.057 0.051
[35,45) 0.071 0.045 0.062 0.049
[45,90) 0.111 0.059 0.062 0.057
坡向/(°) [0,45) 0.073 0.09 0.061 0.091 0.044 0.058 0.029 0.063
[45,135) 0.076 0.099 0.062 0.041
[135,225) 0.059 0.076 0.053 0.035
[225,315) 0.036 0.061 0.030 0.020
[315,360) 0.029 0.026 0.020 0.013
起伏度/m [0,30) 0.118 0.106 0.572 0.110 0.110 0.110 0.103 0.101
[30,70) 0.044 0.519 0.050 0.047
[70,200) 0.063 0.524 0.041 0.038
[200,300) 0.074 0.103 0.071 0.067
[300,+∞) 0.074 0.577 0.071 0.067
地震峰值加速度/(m·s-2) 0.10 g 0.074 0.099 0.142 0.092 0.121 0.082 0.113 0.089
0.15 g 0.077 0.147 0.118 0.105
0.20 g 0.043 0.078 0.036 0.031
0.30 g 0.019 0.042 0.061 0.058
0.40 g 0.064 0.065 0.101 0.092
年均降雨量/mm [0,700) 0.417 0.115 0.910 0.109 0.355 0.055 0.155 0.104
[700,750) 0.289 0.534 0.079 0.187
[750,800) 0.257 0.529 0.064 0.129
[800,850) 0.461 0.439 0.022 0.104
[850,+∞) 0.604 0.496 0.044 0.261
地层岩性 坚硬岩 0.132 0.074 0.715 0.102 0.094 0.091 0.108 0.090
较坚硬岩 0.067 0.684 0.087 0.103
较软岩 0.174 0.814 0.172 0.203
软岩 0.105 0.127 0.109 0.128
极软岩 0.105 0.605 0.065 0.078
道路/m [0,100) 0.697 0.065 0.367 0.055 0.375 0.109 0.300 0.097
[100,200) 0.588 0.313 0.273 0.174
[200,300) 0.548 0.236 0.240 0.138
[300,400) 0.469 0.272 0.208 0.142
[400,+∞) 0.339 0.179 0.173 0.153
水系/m [0,100) 0.683 0.064 0.481 0.091 0.429 0.110 0.123 0.092
[100,200) 0.589 0.430 0.325 0.137
[200,300) 0.501 0.373 0.282 0.119
[300,400) 0.448 0.361 0.284 0.146
[400,+∞) 0.336 0.231 0.196 0.061
距断层距离/m [0,500) 0.138 0.086 0.073 0.051 0.094 0.102 0.077 0.083
[500,1 000) 0.118 0.072 0.091 0.064
[1 000,2 000) 0.097 0.041 0.054 0.049
[2 000,3 000) 0.114 0.057 0.057 0.037
[3 000,+∞) 0.062 0.039 0.053 0.042
植被覆盖度 [0,0.2) 0.130 0.096 0.031 0.058 0.031 0.051 0.021 0.081
[0.2,0.4) 0.111 0.129 0.173 0.050
[0.4,0.6) 0.176 0.193 0.181 0.030
[0.6,0.8) 0.164 0.190 0.182 0.051
[0.8,1] 0.054 0.152 0.200 0.021
土地利用类型 裸地 0.178 0.058 0.273 0.082 0.175 0.091 0.251 0.070
草原 0.331 1.023 0.340 0.441
森林 0.335 1.032 0.361 0.443
水域 0.219 1.338 0.288 0.501
耕地 0.495 1.295 0.528 0.665
城镇 0.457 0.984 0.500 0.713
Tab.2  Information value(I) and weight(W) of risk assessment factors
指标 时间 道孚县 雅江县 丹巴县 九龙县 壤塘县 金川县 康定市 马尔康市
防灾减
灾能力
2007年 1.536 1.605 1.506 1.371 1.471 1.351 0.999 0.891
2012年 1.733 1.731 1.704 1.673 1.620 1.613 1.246 0.906
2017年 1.691 1.695 1.630 1.661 1.600 1.545 1.110 0.951
2022年 1.726 1.698 1.518 1.654 1.708 1.616 0.983 1.084
脆弱性 2007年 0.996 0.817 0.749 0.962 0.829 0.880 0.681 0.922
2012年 0.898 0.885 0.662 0.947 0.934 0.843 0.684 0.994
2017年 0.828 0.941 0.837 0.812 0.915 0.877 0.652 1.008
2022年 1.325 1.102 1.211 0.960 1.092 0.858 0.781 0.969
暴露性 2007年 1.060 0.767 1.001 0.895 0.674 1.115 1.076 0.828
2012年 0.834 0.780 1.103 0.820 0.679 0.886 1.108 0.699
2017年 0.759 0.656 0.983 0.779 0.669 0.964 1.033 0.739
2022年 0.857 0.747 1.000 0.753 0.747 1.100 1.259 0.804
Tab.3  Weight of indicators for vulnerability, exposure, and disaster prevention and mitigation capability
危险性 防灾减
灾能力
脆弱性 暴露性 Wi
危险性 1 3 4 5 0.520 0
防灾减灾能力 1/3 1 3 4 0.268 2
脆弱性 1/4 1/3 1 3 0.140 9
暴露性 1/5 1/4 1/3 1 0.070 9
Tab.4  Results of analytic hierarchy process
Fig.2  Distribution of hazard levels
危险
等级
2007年 2012年 2017年 2022年
灾害点/
灾害点
占比/%
区域面积
占比/%
灾害点/
灾害点
占比/%
区域面积
占比/%
灾害点/
灾害点
占比/%
区域面积
占比/%
灾害点/
灾害点
占比/%
区域面积
占比/%
极低 0 0.00 4.51 0 0.00 2.86 0 0.00 6.48 2 0.07 8.57
2 0.53 13.07 0 0.00 10.90 98 3.62 32.48 114 3.78 29.87
37 9.76 41.62 42 3.14 38.64 608 22.45 38.49 543 18.02 36.33
175 46.17 37.82 428 31.96 39.33 839 30.98 16.66 1 080 35.84 20.07
极高 165 43.54 2.98 869 64.90 8.27 1 163 42.95 5.90 1 274 42.28 5.16
Tab.5  Proportion of area by risk levels
Fig.3  Accuracy analysis of risk assessment
Fig.4  Distribution of vulnerability levels
Fig.5  Distribution of exposure levels
Fig.6  Distribution of disaster prevention and mitigation capability levels
Fig.7  Distribution of risk levels
Fig.8  Trend of cold and hot spot aggregation distribution
Fig.9  Fitting analysis of risk change trend
Fig.10  Changes in proportion of risk areas
指标 因子 2007年 2012年 2017年 2022年
危险性 地震峰值加速度 7.21 6.24 7.06 7.04
年均降雨量 7.46 6.55 7.88 6.68
土地利用类型 5.60 5.56 5.17 5.85
起伏度 7.25 8.01 7.92 8.02
坡度 6.33 6.18 6.43 6.67
坡向 6.05 6.03
防灾减
灾能力
地方财政总支出 5.12 5.19 5.77
每千人病床张数 5.48 5.49 5.44
每千人卫生技术人员数 5.53 5.30
每千人护士数 6.80 7.72 7.27 7.27
Tab.6  Main factors for obstacle assessment(%)
[1] 中华人民共和国自然资源部. 2022年中国自然资源统计公报[R/OL]. 2023(2023-04-12). https://gi.mnr.gov.cn/202304/t20230412_2781113.html.
url: https://gi.mnr.gov.cn/202304/t20230412_2781113.html
[1] Ministry of Natural Resources of the People’s Republic of China. Statistical bulletin of China’s natural resources in 2022[R/OL]. 2023(2023-04-12). https://gi.mnr.gov.cn/202304/t20230412_2781113.html.
url: https://gi.mnr.gov.cn/202304/t20230412_2781113.html
[2] 齐信, 唐川, 陈州丰, 等. 地质灾害风险评价研究[J]. 自然灾害学报, 2012, 21(5):33-40.
[2] Qi X, Tang C, Chen Z F, et al. Research of geohazards risk assessment[J]. Journal of Natural Disasters, 2012, 21(5):33-40.
[3] 甄艳, 鲁小丫, 蒲慧龙, 等. 都江堰虹口乡地质灾害风险评价[J]. 测绘科学, 2016, 41(11):66-71,97.
[3] Zhen Y, Lu X Y, Pu H L, et al. Geological hazard risk assessment in Hongkou County of Dujiangyan[J]. Science of Surveying and Mapping, 2016, 41(11):66-71,97.
[4] 杨淞月, 翁茂芝, 田华, 等. 湖北省鹤峰县城区滑坡地质灾害风险评价[J]. 安全与环境工程, 2021, 28(1):144-155.
[4] Yang S Y, Weng M Z, Tian H, et al. Landslide risk evaluation in the urban area in Hefeng County,Hubei Province[J]. Safety and Environmental Engineering, 2021, 28(1):144-155.
[5] 唐亚明, 张茂省, 李林, 等. 滑坡易发性危险性风险评价例析[J]. 水文地质工程地质, 2011, 38(2):125-129.
[5] Tang Y M, Zhang M S, Li L, et al. Discrimination to the landslide susceptibility,hazard and risk assessment[J]. Hydrogeology and Engineering Geology, 2011, 38(2):125-129.
[6] 徐庆方, 何开寿, 胡励耘, 等. 基于危险源识别的山区地质灾害风险定量评价——以贵州省茅台镇为例[J]. 安全与环境工程, 2023, 30(5):152-165.
[6] Xu Q F, He K S, Hu L Y, et al. Quantitative risk assessment of geological hazards based on hazard source identification:A case study of Maotai Town,Guizhou Province[J]. Safety and Environmental Engineering, 2023, 30(5):152-165.
[7] 周超, 常鸣, 徐璐, 等. 贵州省典型城镇矿山地质灾害风险评价[J]. 武汉大学学报(信息科学版), 2020, 45(11):1782-1791.
[7] Zhou C, Chang M, Xu L, et al. Risk assessment of typical urban mine geological disasters in Guizhou Province[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1782-1791.
[8] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10):2034-2045.
[8] Liu J P, Liang E J, Xu S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2034-2045.
[9] Wang W D, Li J Y, Han Z. Comprehensive assessment of geological hazard safety along railway engineering using a novel method:A case study of the Sichuan-Tibet Railway,China[J]. Geomatics,Natural Hazards and Risk, 2020, 11(1):1-21.
[10] 艾力, 杨冰玉, 郭丽. 基于不同模型和单元的滑坡易发性评价比较[J]. 地理空间信息, 2020, 18(6):117-121.
[10] Ai L, Yang B Y, Guo L. Comparison of landslide susceptibility evaluation based on different data units and models[J]. Geospatial Information, 2020, 18(6):117-121.
[11] 周保, 隋嘉, 孙皓, 等. 基于多源遥感数据的青海省地质灾害评价[J]. 自然灾害学报, 2022, 31(4):231-240.
[11] Zhou B, Sui J, Sun H, et al. Evaluation of geological disasters in Qinghai Province based on multi-source remote sensing data[J]. Journal of Natural Disasters, 2022, 31(4):231-240.
[12] 舒和平, 马金珠, 张鹏, 等. 不同降雨频率单沟泥石流灾害风险评价[J]. 兰州大学学报(自然科学版), 2014, 50(5):653-658.
[12] Shu H P, Ma J Z, Zhang P, et al. Risk assessment of debris flow hazards in different rainfall frequencies[J]. Journal of Lanzhou University (Natural Sciences), 2014, 50(5):653-658.
[13] 宋英旭, 邹昱嘉, 叶润青, 等. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024(1):154-161.doi:10.6046/zrzyyg.2022464.
[13] Song Y X, Zou Y J, Ye R Q, et al. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024(1):154-161.doi:10.6046/zrzyyg.2022464.
[14] 颜阁, 梁收运, 赵红亮. 基于GIS的斜坡单元划分方法改进与实现[J]. 地理科学, 2017, 37(11):1764-1770.
[14] Yan G, Liang S Y, Zhao H L. An approach to improving slope unit division using GIS technique[J]. Scientia Geographica Sinica, 2017, 37(11):1764-1770.
[15] Woodard J B, Mirus B B, Wood N J, et al. Slope unit maker (SUMak):An efficient and parameter-free algorithm for delineating slope units to improve landslide modeling[J]. Natural Hazards and Earth System Sciences, 2024, 24(1):1-12.
[16] 赵萍, 赵思逸, 孙雨, 等. 基于斜坡单元和语义分割的皖南地区滑坡灾害易发性评估[J]. 地质科学, 2024, 59(2):562-574.
[16] Zhao P, Zhao S Y, Sun Y, et al. Landslide susceptibility assessment in southern Anhui Province based on slope units and semantic segmentation[J]. Chinese Journal of Geology, 2024, 59(2):562-574.
[17] 唐川, 马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学, 2015, 35(1):91-98.
[17] Tang C, Ma G C. Small regional geohazards susceptibility mapping based on geomorphic unit[J]. Scientia Geographica Sinica, 2015, 35(1):91-98.
[18] 张群, 易靖松, 张勇, 等. 西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J]. 自然灾害学报, 2022, 31(5):212-221.
[18] Zhang Q, Yi J S, Zhang Y, et al. Geohazard risk assessment about county units in southwest mountainous areas of China:Take Lushui County of Nujiang River basin as an example[J]. Journal of Natural Disasters, 2022, 31(5):212-221.
[19] 温鑫, 范宣梅, 陈兰, 等. 基于信息量模型的地质灾害易发性评价:以川东南古蔺县为例[J]. 地质科技通报, 2022, 41(2):290-299.
[19] Wen X, Fan X M, Chen L, et al. Susceptibility assessment of geological disasters based on an information value model:A case of Gulin County in Southeast Sichuan[J]. Bulletin of Geological Science and Technology, 2022, 41(2):290-299.
[20] 卢晓宁, 洪佳, 王玲玲, 等. 复杂地形地貌背景区干旱风险评价[J]. 农业工程学报, 2015, 31(1):162-169.
[20] Lu X N, Hong J, Wang L L, et al. Drought risk assessment in complex landform area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(1):162-169.
[21] 陈骏炜, 张继权, 阿鲁思, 等. 基于PSO-AHP方法的山区泥石流灾害风险评价——以吉林省蛟河市为例[J]. 东北师大学报(自然科学版), 2019, 51(3):152-160.
[21] Chen J W, Zhang J Q, A L S, et al. Risk assessment of debris flow in the mountain areas based on the PSO-AHP:A case study in Jiaohe City of Jilin Province[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(3):152-160.
[22] 周斌, 邹强, 蒋虎, 等. 川西高原气候变化特征及泥石流动态危险性响应研究[J]. 自然灾害学报, 2022, 31(4):241-255.
[22] Zhou B, Zou Q, Jiang H, et al. Research on climate change characteristics and change of debris flow hazard in the Chuanxi Plateau[J]. Journal of Natural Disasters, 2022, 31(4):241-255.
[23] 李宏艳, 张琰茹, 付国, 等. 焦化污染区春季VOCs的污染特征及其控制策略[J]. 中国环境科学, 2024, 44(3):1234-1243.
[23] Li H Y, Zhang Y R, Fu G, et al. Pollution characteristics and control strategies of volatile organic compounds in coking pollution area in spring[J]. China Environmental Science, 2024, 44(3):1234-1243.
[24] 温亚楠, 张志华, 慕号伟, 等. 动态多源数据驱动模式下的滑坡灾害空间预测[J]. 自然灾害学报, 2021, 30(3):83-92.
[24] Wen Y N, Zhang Z H, Mu H W, et al. Landslide disaster spatial prediction under dynamic multi-source data-driven model[J]. Journal of Natural Disasters, 2021, 30(3):83-92.
[25] 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2):135-141.doi:10.6046/zrzyyg.2023002.
[25] He H X, Li B. Datong flash flood characteristics and disaster risk analysis in Qinghai Province on August 18[J]. Remote Sensing for Natural Resources: 2024, 36(2):135-141.doi:10.6046/zrzyyg.2023002.
[1] ZHANG Jing, HU Xiaojia, WANG Wei, CHEN Donglei, HUANG Xuhong, YANG Junquan. Comprehensive assessment and analysis of natural resources and ecological conditions in the Zhangbei area[J]. Remote Sensing for Natural Resources, 2025, 37(2): 164-172.
[2] ZHAO Yuling, YANG Jinzhong, SUN Weidong, YU Hao, XING Yu, CHEN Dong, MA Xinying, WANG Tixin, WANG Cong. Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management[J]. Remote Sensing for Natural Resources, 2024, 36(4): 23-30.
[3] YUAN Hong, YI Guihua, ZHANG Tingbin, BIE Xiaojuan, LI Jingji, WANG Guoyan, XU Yonghao. Suitability of photovoltaic development in the Western Sichuan Plateau based on remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 301-311.
[4] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[5] HUA Yongchun, CHEN Jiahao, SUN Xiaotian, PEI Zhiyong. Analysis of landscape ecology risk of the Yellow River basin in Inner Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 220-229.
[6] ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
[7] XIN Rongfang, LI Zongren, ZHANG Kun, ZHANG Xing, HUANG Li, LIU Baoshan. Remote sensing monitoring of the dynamic changes in geologic hazards in the Huangshui River basin of Qinghai Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 254-261.
[8] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[9] JIANG Lei, HAN Weizheng, SUN Lina. A study on regional ecological barrier construction based on landscape ecological risk[J]. Remote Sensing for Land & Resources, 2020, 32(4): 219-226.
[10] SANG Xiao, GUO Qiaozhen, QIAO Yue, WU Huanhuan, ZANG Jinlong. Research on livability in Changzhi City of Shanxi Province based on multi-source data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 200-207.
[11] Jie CHEN, Zihong GAO, Shanshan WANG, Dingjian JIN. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
[12] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[13] Xiaodong ZHANG, Xiangnan LIU, Zhipeng ZHAO, Dan WU, Wenzhong WU, Xiaodong CHU. Geological disaster hazard assessment in Yanchi County based on AHP[J]. Remote Sensing for Land & Resources, 2019, 31(3): 183-192.
[14] Qiao HUANG, Yuling PENG, Wenjie QIN. Research on land use suitability evaluation: A case study of Savan water economic zone in Laos[J]. Remote Sensing for Land & Resources, 2018, 30(4): 156-162.
[15] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech