Please wait a minute...
 
国土资源遥感  1996, Vol. 8 Issue (2): 10-20    DOI: 10.6046/gtzyyg.1996.02.02
  应用研究 本期目录 | 过刊浏览 | 高级检索 |
大型斑岩铜矿的遥感信息探讨
周正武, 张建枢, 王卫东
中国有色金属工业总公司地质遥感中心, 101601
THE PROBING OF REMOTE SENSING INFORMATION IN LARGE SCALE PORPHYRY COPPER
Zhou Zhenwu, Zhang Jianshu, Wang Weidong
Remote Sensing Center of CNNC, Yanjiao, the east of Beijing, China, P. C. 101601
全文: PDF(766 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感影像解译的不同规模级别的线性构造、不同类型的环形构造和线-环组合类型以及色彩异常影像是寻找斑岩铜矿,特别是大型斑岩铜矿床最有用的遥感标志。1.砂岩铜矿的规模直接与不同规模不同级别的线性构造相联系区域性斑岩铜矿带直接受大型区域线性构造带和它们的汇聚格局控制,这种区域线性构造带多为区域压性壳断裂或超壳断裂,在遥感图像上常显示为浅色带,其长度超过100km,被称为主干边缘线性构造带(处于隆起单元向坳陷单元过渡部位,靠近隆起单元一侧).此外,一系列次级线性构造往往与主干边缘线性构造成一定角度相交,共同形成一种贯通性构造,在遥感图像上也常显示为浅色线;并直接控制斑岩铜矿田的分布和矿床的定位,被称为横向线性构造,长度一般1km-100km,主要包括三种类型(略),均显示张性特征。事实上,与斑岩铜矿有关的蚀变矿化直接受控于更低级别的线性构造(断裂和裂隙),它们常构成统一的环状和放射状断裂、裂隙系统。2.不同组合的多层环形影像是斑岩铜矿的不同呈矿环块构造的映像几乎所有的斑岩铜矿都与环块构造有关,特别是Ⅲ或Ⅳ级环块(直径50km-500km,包括环隆、环陷及褶皱-断裂环块等).它们控制了斑岩铜矿的定位。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘美玲
齐清文
邹秀萍
李晋
沈媛媛
郑恭明
刘益成
吴凌云
杨旭辉
关键词 遥感土地利用/覆盖变化云南边境地区    
Abstract

In remote sensing image interpretation, different grades of linear structure, different types of circular structure, different combinations of linear and circular structure, and color anomaly are the most useful ioformetion for porphyry copper.1. The Scale of Porphyry Copper Connect Directly with Different Grades of Linear Structure Regional porphyry copper zones are controlled directly by large regional linear structure zones and their convergent patters. The regional linear structure zones which show light color zones in image usually are regional compression crustal or over-crustal faults, over 100km in length,called peripheral-major linear structure zones. In addition, a lot of secondary linear structures which intersect with the peripheral-major structures in suitable angle, form joining-up structures, of ten also show light color in image, directly control ore field distribution and deposit location. They are called crosswise linear structure, generally from 1 to 100km in length, mainly include 3 types and show tension characteristics. In fact, more lower grade of linear structures (faultsand fractures) which usually form circle, radiate like fault and fracture system, directly control alteration and mineralization related to the perphyry copper.2. Different Assemblages of Multilayer Circular Image Feature Reflect on Different Circular Structure Blocks Contained Porphyry Copper Almost all porphyry coppers relate to circular blocks, especially to Ⅲ or Ⅳ grade circular structure blocks (D. From 50 to 500km), including upwarped circular blocks, downwarped circular blocks and foldcircular blocks, fault circular blocks etc.. They control the location of porphyry copper. In igneous circular blocks, coppers usually lie in: (1) On the demarcation surface or the center of multilayer circles reflected on batholith and small hidden rock body; (2) Inside or on the edge of multilayer circles reflected on crater and crypto-explosive breccia pipe; (3) In alteration zone, the circular features show the volcanic rock, intrusive rock body, volcanic apparatus and alteration envelope.3. Linear-Circular Structures Jointly Control the Distribution of Deposit or Field of Porphyry Copper The position of linear structure intersecting or contacting with circular block structtire generally indicates the canal of ore fluid and the space of ore capacity, as a result, it control the distribution of deposit or field of porphyry copper. They mainly include: (1) The action that multilayer inter-contacting circles intersect with linear structure; (2) The out -circle section of multilayer concentric circles, haled in the angle area intersected by two groupo of linear structures;(3) The demarcation surface or the center of multi- layer near concentric circlar block, located in the area intersected by two groups of linear structures; (4) In the big circle with small intercontacling circles, two groups of linear structures intersect, a series of more small circles separately appear along the two groups of linear structures in string or belt, the deposit appears in the edges of the more small circles; (5) Two groups of linear structures intersect in double concentic circles, pluy porrphyry copper appears in the edge of small inter circle.4. The boor Anomaly of Circle and Circular Belt Present Alteration Related tO the Mineralization of Porphyry Copper TM and MSS images processed by computer can clearly show the abnormal color circular belt caused by alteration related to porphyry copper. For example, in TM [6/7 (red), 6/5 (green),6/4 (blue)] image of Wunugetushan quartz-sericitization allerations in which deposit is formed present which circular belt, and illite hydromica alterations in light cyan is outer-circular belt,aroud the which one.

Key words RS    Land use/cover change    Border areas of Yunnan province
收稿日期: 1985-08-08      出版日期: 2011-08-02
作者简介: 周正武 男 1967年生,1990年毕业于昆明理工大学地质矿产普查与勘探专业。遥感地质工程师。现从事遥感技术在地质找矿和环境保护中的应用与开发研究工作。
引用本文:   
周正武, 张建枢, 王卫东. 大型斑岩铜矿的遥感信息探讨[J]. 国土资源遥感, 1996, 8(2): 10-20.
Zhou Zhenwu, Zhang Jianshu, Wang Weidong . THE PROBING OF REMOTE SENSING INFORMATION IN LARGE SCALE PORPHYRY COPPER. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(2): 10-20.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.1996.02.02      或      https://www.gtzyyg.com/CN/Y1996/V8/I2/10


[1] 王之田等.大型桐矿找矿判别评价标志.见有金属矿床和矿山地质学术会议论文摘要汇编.北京:冶金工业出版社,1992.


[2] 周正武等.亚欧大陆桥(中国段)沿线遥感地质矿产编图报告.北京:冶金工业出版社.1994.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发