Please wait a minute...
 
国土资源遥感  2016, Vol. 28 Issue (3): 174-180    DOI: 10.6046/gtzyyg.2016.03.27
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
岷江上游亚高山典型森林植被高光谱特征识别
戴晓爱1, 贾虎军1, 张晓雪1, 吴芬芳2, 郭守恒1, 杨武年1, 杨叶1
1. 成都理工大学地学空间信息技术国土资源部重点实验室/遥感与GIS研究所, 成都 610059;
2. 武汉大学学报信息科学版编辑部, 武汉 430072
Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River
DAI Xiaoai1, JIA Hujun1, ZHANG Xiaoxue1, WU Fenfang2, GUO Shouheng1, YANG Wunian1, YANG Ye1
1. State Key Laboratory of Geo-spatial Information Technology, Ministry of Land and Resources/Institute of Remote Sensing and GIS, Chengdu University of Technology, Chengdu 610059, China;
2. Editorial Board of Geomatics and Information Science of Wuhan University, Wuhan 430072, China
全文: PDF(1827 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

在高光谱数据分类应用中,地物光谱特征分析是对地物进行分类和检索的基础性工作。选取禾本科斑竹、草本科蕨类、荨麻科冷水花、杉科杉木和棕榈科棕榈树等5种岷江上游亚高山森林植被进行实地光谱测量,建立高光谱相似性度量参量,如欧式距离(Euclidean distance,ED)、光谱角度(spectral angle mapper,SAM)、光谱信息散度(spectral information divergence,SID)、SID和SAM混合SID(TAN)以及基于道格拉斯-普克算法的光谱降维距离(spectral distance based on Douglas-Peucker,SDDP)度量算法,定量分析对亚高山森林植被的识别能力。研究结果表明:5种亚高山森林植被光谱特征的差异主要表现在光谱曲线反射波峰和波谷位置; ED对冷水花的相对光谱识别概率最高; SID和SID(TAN)对斑竹与蕨类的识别概率最高; SDDP对杉木的识别概率最高; SAM,SDDP,ED,SID(TAN)和SID这5种光谱相似性测度算法对亚高山森林植被的相对光谱识别熵分别是1.51,1.59,1.61,2.16和2.18,说明光谱角度制图具有较高的识别能力;而道格拉斯-普克光谱检索算法是在提取光谱曲线特征向量的基础上进行相似性测度,其降低了光谱检索的时间频率,在保证相近识别能力的条件下,能够大大提高程序的检索效率,是一种快速有效的高光谱特征匹配和检索算子。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鹿丰玲
巩在武
关键词 掩模遥感云-云阴影决策树(DT)分类器随机森林(RF)分类器    
Abstract

Spectral characteristics analysis is the basis of spectral feature classification and matching in hyperspectral image processing. In this paper, the authors selected five kinds of subalpine forest vegetation to measure their field spectra in the upper reaches of the Minjiang River, which include gramineae mottled bamboo, herbaceous fern,pilea notate, arbor china fir and shrubs palm. Through constructing the high spectral similarity measure index, five measuring methods, i.e., Euclidean distance(ED), spectral angle mapper(SAM), spectral information divergence(SID), spectral information divergence-spectral angle mapper(SID(TAN))and spectral distance based on Douglas-Peucker(SDDP), were used to analyze the relative capability for recognizing forest vegetation on the plateau. According to the results obtained, the spectral feature difference in the five kinds of forest vegetation mainly lies in peaks and troughs in the spectral curves; pilea notate has the highest relative spectral discriminatory probability in ED similarity measurement; mottled bamboo and fern have the highest relative spectral discriminatory probability in SID and SID(TAN); China fir has the highest relative spectral discriminatory probability in SDDP. SAM, SDDP, ED, SID(TAN)and SID of the relative spectral discriminatory entropy are 1.51, 1.59, 1.61, 2.16 and 2.18 respectively. The research results showed that the means reduced the amount of calculation for doing the similarity measurement which extracted the spectral feature vectors with the SFT, DPBSR and DABSR, DPSR. In order to ensure the condition of similar recognition capability, the means can greatly improve the retrieval efficiency of the program, and hence they are the fast and efficient hyperspectral feature matching and retrieval methods.

Key wordsmask    remote sensing    cloud-cloud shadow    decision tree(DT)classifier    random forests(RF) classifier
收稿日期: 2015-01-23      出版日期: 2016-07-01
:  TP751.1  
基金资助:

国家自然科学基金项目"岷江上游毛儿盖地区生态水遥感量化研究"(编号:41071265)、高等学校博士学科点专项科研基金项目"岷江上游高原林区不同植被类型的土壤持水特征研究"(编号:20135122120009)、四川省教育厅科研项目"基于光谱相似度的森林树种识别方法研究——以青城山地区为例"(编号:15ZB0066)、成都理工大学研究基金项目"基于混合像元分解的岷江上游植被覆盖度定量估算研究"(编号:2012YG02)和成都理工大学中青年骨干教师培养计划(编号:10912-JXGG201401)共同资助。

通讯作者: 吴芬芳(1979-),女,硕士,编辑,主要从事遥感与GIS方面的研究。Email:00008225@whu.edu.cn。
作者简介: 戴晓爱(1979-),女,博士,副教授,主要从事遥感与GIS方面的研究。Email:daixiaoa@cdut.cn。
引用本文:   
戴晓爱, 贾虎军, 张晓雪, 吴芬芳, 郭守恒, 杨武年, 杨叶. 岷江上游亚高山典型森林植被高光谱特征识别[J]. 国土资源遥感, 2016, 28(3): 174-180.
DAI Xiaoai, JIA Hujun, ZHANG Xiaoxue, WU Fenfang, GUO Shouheng, YANG Wunian, YANG Ye. Identification of hyperspectral features for subalpine typical vegetation in the upper reaches of the Minjiang River. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 174-180.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2016.03.27      或      https://www.gtzyyg.com/CN/Y2016/V28/I3/174

[1] Wu J,Peng D L.Advances in researches on hyperspectral remote sensing forestry information-extracting technology[J].Spectroscopy and Spectral Analysis,2011,31(9):2305-2312.
[2] Yang Z H,Han J F,Gong D P,et al.The development and application of hyperspectral-remote-sensing technology[J].Hydrographic Surveying and Charting,2003,23(6):55-58.
[3] Wang Z H,Ding L X.Tree species discrimination based on leaf-level hyperspectral characteristic analysis[J].Spectroscopy and Spectral Analysis,2010,30(7):1825-1829.
[4] Clark M L,Roberts D A,Clark D B.Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[J].Remote Sensing of Environment,2005,96(3/4):375-398.
[5] Yu T,Li X C,Wang X,et al.Application advances and outlooks of hyperspectral technique[J].Science of Surveying and Mapping,2012,37(2):115-118.
[6] 林川,宫兆宁,赵文吉,等.基于光谱特征变量的湿地典型植物生态类型识别方法——以北京野鸭湖湿地为例[J].生态学报,2013,33(4):1172-1185. Lin C,Gong Z N,Zhao W J,et al.Identifying typical plant ecological types based on spectral characteristic variables:A case study in Wild Duck Lake wetland,Beijing[J].Acta Ecologica Sinica,2013,33(4):1172-1185.
[7] 梁璇,刘萍,徐正春,等.不同类型城市森林的林下植物多样性研究[J].华南农业大学学报,2015,36(2):69-73. Liang X,Liu P,Xu Z C,et al.A study on the understory species diversity in various urban forests[J].Journal of South China Agricultural University,2015,36(2):69-73.
[8] 郑江坤,宫渊波,刘金鑫,等.岷江上游山地牧道对林下草本群落分布特征的影响[J].草业学报,2015,24(2):1-10. Zheng J K,Gong Y B,Liu J X,et al.Factors affecting understory herb community botanical composition in a dry valley ecotone in the upper reaches of the Minjiang River,Southwest China[J].Acta Prataculturae Sinica,2015,24(2):1-10.
[9] 孔祥兵,舒宁,陶建斌,等.一种基于多特征融合的新型光谱相似性测度[J].光谱学与光谱分析,2011,31(8):2166-2170. Kong X B,Shu N,Tao J B,et al.A new spectral similarity measure based on multiple features integration[J].Spectroscopy and Spectral Analysis,2011,31(8):2166-2170.
[10] 王珂,顾行发,余涛,等.基于频谱相似性的高光谱遥感图像分类方法[J].中国科学:技术科学,2013,43(4):407-416. Wang K,Gu X F,Yu T,et al.Classification of hyperspectral remote sensing images using frequency spectrum similarity[J].Chinese Science:Technological Science,2013,56(4):980-988.
[11] 李飞,周成虎,陈荣国.基于光谱曲线形态的高光谱影像检索方法研究[J].光谱学与光谱分析,2008,28(11):2482-2486. Li F,Zhou C H,Chen R G.Spectral curve shape feature-based hyperspectral remote sensing image retrieval[J].Spectroscopy and Spectral Analysis,2008,28(11):2482-2486.
[12] 程熙,沈占锋,周亚男,等.基于Bhattacharyya距离的典型地物波谱特征差异性分析[J].遥感技术与应用,2013,28(4):707-713. Cheng X,Shen Z F,Zhou Y N,et al.The spectral characteristics separability analysis of spectral database of typical objects of land surface based on Bhattacharyya distance[J].Remote Sensing Technology and Application,2013,28(4):707-713.
[13] 施蓓琦,刘春,陈能,等.典型地物实测光谱的相似性测度与实验分析[J].同济大学学报:自然科学版,2011,39(2):292-298. Shi B Q,Liu C,Chen N,et al.Spectral similarity measure and experimental analyses for field spectroscopy[J].Journal of Tongji University:Natural Science,2011,39(2):292-298.
[14] 杜培军,唐宏,方涛.高光谱遥感光谱相似性度量算法与若干新方法研究[J].武汉大学学报:信息科学版,2006,31(2):112-115. Du P J,Tang H,Fang T.Algorithms for spectral similarity measure in hyperspectral RS[J].Geomatics and Information Science of Wuhan University,2006,31(2):112-115.
[15] van der Meer F.The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery[J].International Journal of Applied Earth Observation and Geoinformation,2006,8(1):3-17.
[16] Sobhan M I.Species Discrimination from A Hyperspectral Perspective[D].Wellington:Wageningen University,2007:1-164.
[17] Dudeni N,Debba P,Cho M,et al.Spectral band discrimination for species observed from hyperspectral remote sensing[C]//Proceedings of the 1st Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing. Grenoble:IEEE,2009:1-4.
[18] 闻兵工,冯伍法,刘伟,等.基于光谱曲线整体相似性测度的匹配分类[J].测绘科学技术学报,2009,26(2):128-131. Wen B G,Feng W F,Liu W,et al.Matching and classification based on the whole comparability measure of spectral curve[J].Journal of Geometrics Science and Technology, 2009,26(2):128-131.
[19] Kumar M N,Seshasai M V R,Vara Prasad K S,et al.A new hybrid spectral similarity measure for discrimination among Vigna species[J].International Journal of Remote Sensing, 2011,32(14):4041-4053.
[20] Ghiyamat A,Shafri H Z M,Mahdiraji G A,et al.Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember[J].International Journal of Applied Earth Observation and Geoinformation,2013,23:177-191.
[21] Chang C I.An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image analysis[J].IEEE Transactions on Information Theory,2000,46(5):1927-1932.
[22] Wu J J,Gao Z H,Wang B Y,et al.Classification of multispectral images based on SAM-SID mixed measure[J].Remote Sensing Information,2012,27(5):67-72.
[23] Yang H F,Li J L,Mu S J,et al.Analysis of hyperspectral reflectance characteristics of three main grassland types in Xinjiang[J].Acta Prataculturae Sinica,2012,21(6):258-266.

[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发