Sandy lands classification using GF-1 time series NDVI data
DING Xiangyuan1, GAO Zhihai1, SUN Bin1, WU Junjun2, XUE Chuanping1, WANG Yan1
1. Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China; 2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
Abstract:In this study, GF-1 16 m multispectral images were used as data source, the spectral characteristics of each type of sandy land and its change characteristics of time series NDVI were analyzed, the sandy lands were classified by the GF-1 image at a single time, and time series NDVI data were compared with each other separately; on such a basis, the classification accuracy was evaluated. The results showed that the accuracy was 73.34% and Kappa coefficient was 0.7 by only using single time original data in growing season; however, the accuracy was increased to 92.04% by joining the time series NDVI data, with Kappa coefficient raised to 0.87; the accuracy was 81.44% and Kappa coefficient was 0.77 by using the time series NDVI data combined with non-growing season data, thus improving the classification accuracy obviously. It is indicated that GF-1 time series NDVI data have a huge application potential in the sandy lands classification.
[1] 国家林业局.中国荒漠化和沙化状况公报[R].北京:国家林业局,2011. State Forestry Administration.A Bulletin of Status Quo of Desertification and Sandification in China[R].Beijing:State Forestry Administration,2011. [2] 林 进,周卫东.中国荒漠化监测技术综述[J].世界林业研究,1998(5):58-63. Lin J,Zhou W D.A review desertification monitoring in China[J].World Forestry Research,1998(5):58-63. [3] 王晓慧,李增元,高志海.沙化土地遥感监测研究现状[J].林业科学,2008,44(7):90-96. Wang X H,Li Z Y,Gao Z H.Studies on remote sensing monitoring of sandification[J].Scientia Silvae Sinicae,2008,44(7):90-96. [4] 龙 晶.沙化土地遥感评价方法[J].国土资源遥感,2005,17(1):17-19,33.doi:10.6046/gtzyyg.2005.01.04"> doi:10.6046/gtzyyg.2005.01.04. Long J.The application of remote sensing technique to sandy desertification assessment[J].Remote Sensing for Land and Resources,2005,17(1):17-19,33.doi:10.6046/gtzyyg.2005.01.04"> doi:10.6046/gtzyyg.2005.01.04. [5] 王志波,高志海,王琫瑜,等.基于面向对象方法的沙化土地遥感信息提取技术研究[J].遥感技术与应用,2012,27(5):770-777. Wang Z B,Gao Z H,Wang F Y,et al.The study of extracting sandy lands information from remote sensing image based on object-oriented method[J].Remote Sensing Technology and Application,2012,27(5):770-777. [6] 李晓琴,张振德,张佩民.格尔木土地荒漠化遥感动态监测研究[J].国土资源遥感,2006,18(2):61-63,78.doi:10.6046/gtzyyg.2006.02.15"> doi:10.6046/gtzyyg.2006.02.15. Li X Q,Zhang Z D,Zhang P M.Remote sensing survey and monitoring of desertification in Golmud Area[J].Remote Sensing for Land and Resources,2006,18(2):61-63,78.doi:10.6046/gtzyyg.2006.02.15"> doi:10.6046/gtzyyg.2006.02.15. [7] 仲 波,马 鹏,聂爱华,等.基于时间序列HJ-1/CCD数据的土地覆盖分类方法[J].中国科学(地球科学),2014,44(5):967-977. Zhong B,Ma P,Nie A H,et al.Land cover mapping using time series HJ-1/CCD data[J].Science China Earth Sciences,2014,57(8):1790-1799. [8] 张焕雪,曹 新,李强子,等.基于多时相环境星NDVI时间序列的农作物分类研究[J].遥感技术与应用,2015,30(2):304-311. Zhang H X,Cao X,Li Q Z,et al.Research on crop identification using multi-temporal NDVI HJ images[J].Remote Sensing Technology and Application,2015,30(2):304-311. [9] 贾明明,任春颖,刘殿伟,等.基于环境星与MODIS时序数据的面向对象森林植被分类[J].生态学报,2014,34(24):7167-7174. Jia M M,Ren C Y,Liu D W,et al.Object-oriented forest classification based on combination of HJ-1 CCD and MODIS-NDVI data[J].Acta Ecologica Sinica,2014,34(24):7167-7174. [10] 朱 满,胡光宇,于之峰.基于融合NDVI和EVI时间序列的遥感影像分类研究[J].遥感信息,2009(5):44-46. Zhu M,Hu G Y,Yu Z F.Research on remote sensing image classification based on NDVI and EVI time series[J].Remote Sensing Information,2009(5):44-46. [11] 杨闫君,占玉林,田庆久,等.基于GF-1/WFV NDVI时间序列数据的作物分类[J].农业工程学报,2015,31(24):155-161. Yang Y J,Zhan Y L,Tian Q J,et al.Crop classification based on GF-1/WFV NDVI time series[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(24):155-161. [12] 刘树林,王 涛.浑善达克沙地的土地沙漠化过程研究[J].中国沙漠,2007,27(5):719-724. Liu S L,Wang T.Study on land desertification process in Hunshandake Sandy Land[J].Journal of Desert Research,2007,27(5):719-724. [13] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 24255—2009沙化土地监测技术规程[S].北京:中国标准出版社,2009. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,China National Standardization Management Committee.GB/T 24255—2009 Technical Code of Practice on the Sandified Land Monitoring[S].Beijing:China Standard Press,2009. [14] 全国荒漠化和沙化监测技术规定[R].国家林业局,2009. The National Desertification and Desertification Monitoring Technology[R].State Forestry Administration,2009. [15] 李晓松,李增元,高志海,等.基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感估测[J].中国沙漠,2011,31(1):162-167. Li X S,Li Z Y,Gao Z H,et al.Estimation of vegetation cover in desertified regions from Hyperion imageries using NDVI and partial least squares regression[J].Journal of Desert Research,2011,31(1):162-167. [16] Rouse J W,Haas R H,Schell J A,et al.Monitoring vegetation systems in the Great Plains with ERTS[C]//Freden S C,Mercanti E P,Becker M A.Proceedings of third Earth Resources Technology Satellite Symposium.Washington:NASA Special Publication,1974:310-317. [17] 李长龙,高志海,吴俊君,等.基于分形网络进化分割和对象特征提取的GF-1卫星数据沙化土地分类识别研究[J].干旱区资源与环境,2015,29(11):152-157. Li C L,Gao Z H,Wu J J,et al.The sandy lands identification and classification of GF-1 based on FNEA and object features[J].Journal of Arid Land Resources and Environment,2015,29(11):152-157. [18] 童庆禧,张 兵,郑兰芬.高光谱遥感——原理、技术与应用[M].北京:高等教育出版社,2006. Tong Q X,Zhang B,Zheng L F.Hyperspectral Remote Sensing Principle,Technology and Application[M].Beijing:Higher Education Press,2006. [19] 李 松,邓宝昆,徐红勤,等.地震型滑坡灾害遥感快速识别方法研究[J].遥感信息,2015,30(4):25-28. Li S,Deng B K,Xu H Q,et al.Fast interpretation methods of landslides triggered by earthquake using remote sensing imagery[J].Remote Sensing Information,2015,30(4):25-28.