Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (4): 1-5    DOI: 10.6046/gtzyyg.2017.04.01
  综述 本期目录 | 过刊浏览 | 高级检索 |
静止轨道微波大气探测技术现状
钱博1, 曹岸杰2, 吴莹1, 王鹏凯1
1.南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心/中国气象局气溶胶与云降水重点开放实验室,南京 210044;
2.上海卫星工程研究所,上海 200240
A review on geostationary earth orbit microwave atmospheric sounding technology
QIAN Bo1, CAO Anjie2, WU Ying1, WANG Pengkai1
1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Shanghai Institute of Satellite Engineering, Shanghai 200240, China
全文: PDF(680 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 极轨卫星的微波大气探测系统可以探测云雨大气,但其较长时间的探测周期在相当程度上限制了其在中小尺度灾害性天气监测中的应用。静止卫星虽然可以实现高时间分辨率的监测,但由于缺少微波载荷无法获取云雨大气的内部信息。综合极轨卫星的微波大气探测和静止卫星的高时效大气探测的优势,发展静止轨道微波大气探测技术,实现对地球大气的全天候、全天时观测,对改进灾害性天气的预报、预测能力意义重大。通过介绍静止轨道微波大气探测 (geostationary earth orbit microwave atmospheric sounding, GEOMAS) 技术的国内外研究现状,阐述了GEOMAS技术所面临的困难和挑战,分析了真实孔径天线体制和干涉式合成孔径天线体制的优劣,并对GEOMAS的技术发展前景进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常变蓉
李仁东
关键词 武汉市建设用地扩张遥感标准差椭圆(SDE)空间分异    
Abstract:The cloudy and raining atmosphere can be detected by the microwave atmospheric sounding system in polar orbit meteorology satellites, but its long sounding cycle is a great limit for small and medium scale of severe weather (SMSSW) monitoring. Although SMSSW can be detected by geostationary earth orbit satellites (GEOS) with high temporal resolution, internal atmospheric parameters cannot be acquired because of the lack of microwave sounder on GEOS. Working in concert, microwave atmospheric sounding and GEOS at high-temporal resolution together comprise the geostationary earth orbit microwave atmospheric sounding (GEOMAS) system. Developing GEOMAS technology is of great significance for improving SMSSW forecast in all-weather and all-time sounding. In this paper, the research status on GEOMAS was described, the difficulties and challenges of GEOMAS were recounted, the advantages and disadvantages of synthetic aperture antenna system (SAAS) and real aperture antenna system (RAAS) were analyzed and the prospects for GEOMAS development were discussed.
Key wordsWuhan City    construction land expansion    remote sensing    standard deviational ellipse(SDE)    spatial variation
收稿日期: 2016-05-05      出版日期: 2017-12-04
:  P412  
基金资助:江苏省基础研究计划青年基金项目“微波地表温度计算及其对中国典型地区地表发射率反演改进研究”(编号: BK20150911)、国家自然科学基金项目“FY-3微波数据RFI订正及我国典型地区地表微波发射率反演研究”(编号: 41305033)和江苏高校优势学科建设工程资助项目共同资助
作者简介: 钱 博(1980-),男,博士,主要从事大气遥感与大气探测方面的科研与教学工作。Email: bo.qian@nuist.edu.cn。
引用本文:   
钱博, 曹岸杰, 吴莹, 王鹏凯. 静止轨道微波大气探测技术现状[J]. 国土资源遥感, 2017, 29(4): 1-5.
QIAN Bo, CAO Anjie, WU Ying, WANG Pengkai. A review on geostationary earth orbit microwave atmospheric sounding technology. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 1-5.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.04.01      或      https://www.gtzyyg.com/CN/Y2017/V29/I4/1
[1] 卢乃锰.静止轨道微波探测——风云气象卫星发展的新挑战[EB/OL].(2012-09-19).http://www.meeting.edu.cn/meeting/media/flashmediadetail.jsp?mediaId=11912&url=qixiang2012video/3.flv.
Lu N M.Geostationary earth orbit microwave atmospheric sounding:A new challenge for Fengyun meteorological satellites[EB/OL].(2012-09-19).http://www.meeting.edu.cn/meeting/media/flashmediadetail.jsp?mediaId=11912&url=qixiang2012video/3.flv.
[2] NASA官网对AMSU仪器的介绍[EB/OL].http://disc.sci.gsfc.nasa.gov/AIRS/documentation/amsu_instrument_guide.shtml.
An introduction on AMSU instrument in NASA official website[EB/OL].http://disc.sci.gsfc.nasa.gov/AIRS/documentation/amsu_instrument_guide.shtml.
[3] Muth C,Lee P S,Shiue J C,et al.Advanced technology microwave sounder on NPOESS and NPP[C]//Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium. Anchorage,AK,USA:IEEE,2004:2454-2458.
[4] 杨 军,董超华,卢乃锰,等.中国新一代极轨气象卫星——风云三号[J].气象学报,2009,67(4):501-509.
Yang J,Dong C H,Lu N M,et al.FY-3A:The new generation polar-orbiting meteorological satellite of China[J].Acta Meteorologica Sinica,2009,67(4):501-509.
[5] Staelin D H,Rosenkranz P W.Applications review panel:High resolution passive microwave satellites[R].Report for NASA contract NAS5-23677.Cambridge,MA:MIT Press,1978.
[6] Chedin A,Pick D,Rizzi R.Definition study and impact analysis of a microwave radiometer on a geostationary spacecraft[C]//ESA Second Generation Meteosat Definition Studies on Microwave and Infrared Vertical Sounders.Bracknell:STI,1986:58.
[7] Gasiewski A J,Barret J W,Bonanni P G,et al.Aircraft-based radiometric imaging of tropospheric temperature and precipitation using the 118.75 GHz oxygen resonance[J].Journal of Applied Meteorology,1990,29:620-632.
[8] Evans K F,Walter S J,Heymsfield A J,et al.Modeling of sub-millimeter passive remote sensing of cirrus clouds[J].Journal of Applied Meteorology,1998,37(2):184-205.
[9] Evans K F,Evans A H,Marshall B T,et al.The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer[J].Journal of Applied Meteorology,1999,38(5):514-525.
[10] Gurka J J,Heil J N.The national weather service operational requirements for the evolution of future NOAA operational geostationary satellites[C]//Processing of the 16th International Conference on Interactive Information and Processing Systems(IIPS) for Meteorology,Oceanography, and Hydrology.Copenhagen,Denmark:IIPS,2000:69-76.
[11] Boncyk W C,Wilson W J,Lambrigtsen B H.The enabling technologies of the geostationary synthetic aperture microwave sounder(GEO/SAMS)[C]//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium.Honolulu,HI,USA:IEEE,2000:3169-3171.
[12] Lambrigtsen B H.GEO/SAMS-the geostationary synthetic aperture microwave sounder[C]//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium.Honolulu,HI,USA:IEEE,2000,7:2984-2987.
[13] Lambrigtsen B,Gaier T,Kangaslahti P,et al.A geostationary microwave sounder for NASA and NOAA[C]//Proceedings of the 16th international TOVS study conference. Angra dos Reis,Brazil:International TOVS Working Group,2008.
[14] Lambrigtsen B H,Brown S T,Dinardo S J,et al.Progress in developing GeoSTAR:A microwave sounder for GOES-R[C]//Proceedings of Earth Observing Systems X. San Diego,CA,USA:SPIE,2005,5882:58820L.
[15] Lambrigtsen B H,Wilson W J,Tanner A B,et al.GeoSTAR:A microwave sounder for geostationary satellite[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium.Anchorage,AK,USA:IEEE,2004:777-780.
[16] Tanner A B,Wilson W J,Lambrigsten B H,et al.Initial results of the geostationary synthetic thinned array radiometer(GeoSTAR) demonstrator instrument[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(7):1947-1957.
[17] Bizzarri B.MW/Sub-mm sounding form geostationary orbit[R].Report to EUMETSAT Science W.G.,EUM/STG/SWG/9/00/DOC/11,2000:11.
[18] Bizzarri B,Albin J G,David H S,et al.Requirements and perspectives for MW/Sub-mm sounding from geostationary satellite[C]//Proceedings of the 2002 EUMETSAT Meteorological Satellite Conference.Dublin,Ireland,2002:97-105.
[19] Christensen J,Carlstrom A,Ekstrom H,et al.GAS:The geostationary atmospheric sounder[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Barcelona,Spain:IEEE,2007:223-226.
[20] 中华人民共和国科学技术部.前沿技术[C]//中国科学技术发展报告2009.北京:科学技术文献出版社,2010:136.
Ministry of Science and Technology of the PRC.Advanced technology[C]//2009 China Science and Technology Development Report.Beijing:Science and Technical Document Press,2010:136.
[21] 吴 季,刘 浩,孙伟英,等,综合孔径微波辐射计的技术发展及其应用展望[J].遥感技术与应用,2005,20(1):24-29.
Wu J,Liu H,Sun W Y,et al.Technical development and application prospect of synthetic aperture radiometer[J].Remote Sensing Technology and Application,2005,20(1):24-29.
[22] Liu H,Wu J,Zhang S W,et al.The geostationary interferometric microwave sounder(GIMS):Instrument overview and recent progress[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium.Vancouver,BC,Canada:IEEE,2011:3629-3632.
[23] Xiao H,Yu S L,Yao C B,et al.Geostationary millimetre and submillimetre-wave sounder for “FengYun-4” meteorological satellite[C]//Proceedings of the 3rd China-Europe Workshop on Millimetre-Waves and Terahertz Technologies.2010.
[24] Dietrich S,Paola F D,Bizzarri B.MTG:Resolution enhancement for MW measurements from geostationary orbits[J].Advances in Geosciences,2006,7:293-299.
[25] 陈洪滨.利用高频微波被动遥感探测大气[J].遥感技术与应用,1999,14(2):49-54.
Chen H B.Remote sensing of the atmosphere with the millimeter and sub-millimeter wave radiometry from the space[J].Remote Sensing Technology and Application,1999,14(2):49-54.
[26] 郭 杨,卢乃锰,谷松岩.毫米/亚毫米波探测大气温度和湿度的通道选择[J].应用气象学报,2010,21(6):716-723.
Guo Y,Lu N M,Gu S Y.Channel selection of millimeter/submillimeter wave for temperature and humidity sounding[J].Journal of Applied Meteorological Science,2010,21(6):716-723.
[27] Jiang H B,Su Y Y,Jiao Q S,et al.Typical geologic disaster surveying in Wenchuan 8.0 earthquake zone using high resolution ground LiDAR and UAV remote sensing[C]//Proceedings SPIE 9262,Lidar Remote Sensing for Environmental Monitoring XIV.Beijing,China:SPIE,2014:926219.
[28] 欧空局土壤湿度与海水盐度卫星-SMOS介绍[EB/OL].http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Facts_and_figures.
An introduction on ESA soil moisture and ocean salinity-SMOS[EB/OL].http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS/Facts_and_figures.
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[5] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[6] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[7] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[8] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[9] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[10] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[11] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发