Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 299-306    DOI: 10.6046/zrzyyg.2021373
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价
郭帮杰1(), 潘蔚2, 张闯2
1.中核战略规划研究总院,北京 100048
2.核工业北京地质研究院,北京 100029
3.沙特地质调查局,吉达 21514
Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia
GUO Bangjie1(), PAN Wei2, ZHANG Chuang2, ABDULLAH I. Nabhan3, HASSAN Zowawi3
1. China Institute of Nuclear Industry Strategy, Beijing 100048, China
2. Beijing Research Institute of Uranium Geology, Beijing 100029, China
3. Saudi Geological Survey, Jeddah 21514, Saudi Arabia
全文: PDF(3989 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价,以中沙铀矿勘查项目中的钙结岩型铀矿勘查为例,利用ASTER等卫星遥感数据和数字高程模型(digital elevation model,DEM)数据,采取目视判别、水文分析和主成分分析等方法,应用辅助铀源评价、补-径-排体系划分和含矿母岩识别等技术,对比分析了3个钙结岩区铀成矿条件。结果显示,片区2的铀源和补-径-排等铀成矿条件最完善,片区1缺乏良好的沉积盆地作为排泄区,片区3缺乏良好的铀源。研究表明: 补-径-排体系的完整性对钙结岩型铀矿的成矿作用至关重要,缺一不可,且优质的铀源和沉积环境利于形成大规模的钙结岩型铀矿; 铀元素富集累积时间的长短直接影响钙结岩型铀矿的规模大小; 沙特阿拉伯研究区内钙结岩型铀矿成矿的有利沉积环境为周边有大片铀源的蒸发型湖(干盐湖)相沉积。研究结果可为在类似地区寻找钙结岩型铀矿提供重要参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭帮杰
潘蔚
张闯
关键词 遥感钙结岩型铀矿补-径-排体系成矿条件沙特阿拉伯    
Abstract

This study aims at the identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia through the exploration of calcrete-hosted uranium deposits in the uranium exploration project of China and Saudi Arabia. Based on satellite (ASTER) remote sensing data and DEM data, the uranium metallogenic conditions of three calcrete areas were compared and analyzed using methods including visual discrimination, hydrological analysis, and principal component analysis and techniques including uranium source evaluation, source-pathway-trap system division, and ore-bearing rock identification. The results show that Area 2 has the most complete uranium metallogenic conditions in terms of uranium source and source-pathway-trap conditions, Area 1 lacks a good sedimentary basin as a drainage area, and Area 3 lacks a good uranium source. Accordingly, the following conclusions were drawn. The integrity of the source-pathway-trap system is crucial and indispensable for the metallogenesis of calcrete-hosted uranium deposits. Moreover, high-quality uranium sources and sedimentary environments are conducive to the formation of large-scale calcrete-hosted uranium deposits. The duration of uranium enrichment and accumulation directly affects the scale of calcrete-hosted uranium deposits. The favorable sedimentary environment for calcrete-hosted uranium deposits is an evaporative lake (playa) with large uranium sources in the study areas of Saudi Arabia. Therefore, this study can guide the exploration of calcrete-hosted uranium deposits in similar areas.

Key wordsremote sensing    calcrete-hosted uranium deposit    source-pathway-trap system    metallogenic conditions    Saudi Arabia
收稿日期: 2021-11-05      出版日期: 2022-12-27
ZTFLH:  P627  
基金资助:国防科工局核能开发项目“基于航空高光谱与伽玛能谱的铀矿勘查技术研究”([2021]88);“塔里木巨型复合盆地砂岩铀矿预测评价技术与资源突破方向研究”(地HTLM2101)
作者简介: 郭帮杰(1988-),男,博士,高级工程师,主要从事遥感地质学及铀矿地质研究。Email: 695483383@qq.com
引用本文:   
郭帮杰, 潘蔚, 张闯. 基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价[J]. 自然资源遥感, 2022, 34(4): 299-306.
GUO Bangjie, PAN Wei, ZHANG Chuang, ABDULLAH I. Nabhan, HASSAN Zowawi. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia. Remote Sensing for Natural Resources, 2022, 34(4): 299-306.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021373      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/299
Fig.1  研究区分布示意图
(ETM B7(R),B4(G),B2(B)假彩色合成影像)
点号 测量点描述 U/ppm Th/ppm Th/U 点号 测量点描述 U/ppm Th/ppm Th/U
D026 地表花岗岩,风化 3.32 37.27 11.23 D176 断裂带上的粗粒钾长花岗岩 2.24 14.59 6.51
D028 地表花岗岩,微风化 4.17 18.32 4.39 D178 粗粒黑云母钾长花岗岩 7.86 23.13 2.94
D066 细粒二长花岗岩,风化 7.75 57.84 7.46 D179 花岗岩 2.91 10.84 3.73
D067 细粒花岗岩,微风化 4.81 22.21 4.62 D181 地表粗粒花岗岩,风化 4.40 37.96 8.63
D068 细粒二长花岗岩,风化 2.82 17.99 6.38 D183 粗粒钾长花岗岩 7.10 24.27 3.42
D090 钾长花岗岩风化壳碎屑 5.59 40.44 7.23 D186 花岗岩风化壳碎屑 1.48 14.53 9.82
D091 钾长花岗岩风化壳碎屑 3.74 24.70 6.60 D187 地表花岗岩,强烈风化 3.09 52.43 16.97
D133 钾长花岗岩风化壳碎屑 4.37 23.05 5.27 D188 地表花岗岩,强烈风化 1.91 27.41 14.35
D134 地表粗粒钾长花岗岩,风化 2.97 33.99 11.44 D189 花岗岩风化壳碎屑 3.12 19.20 6.15
D135 地表粗粒钾长花岗岩,风化 2.41 24.54 10.18 D190 花岗岩风化壳碎屑 3.79 17.93 4.73
D136 地表粗粒钾长花岗岩,风化 4.24 34.61 8.16 D191 花岗岩风化壳碎屑 4.06 29.01 7.15
D151 地表花岗岩,强烈风化 1.26 30.82 24.46 D202 地表花岗岩,强烈风化 2.21 19.80 8.96
D152 地表粗粒钾长花岗岩,较新鲜 12.66 29.36 2.32 D226 地表粗粒钾长花岗岩,风化 5.62 28.00 4.98
D153 花岗岩风化壳碎屑 1.07 35.31 33.00 D227 断裂带上的粗粒钾长花岗岩 2.49 40.63 16.32
D162 地表花岗伟晶岩,强烈风化 1.63 19.26 11.82 D228 断裂带上的粗粒钾长花岗岩 4.23 37.66 8.90
D169 斑状花岗岩,强烈风化 4.24 21.23 5.01 D229 断裂带上的粗粒钾长花岗岩 6.84 30.61 4.48
D173 粗粒黑云母钾长花岗岩 5.84 23.42 4.01
Tab.1  研究区花岗岩U和Th含量信息
Fig.2  铀源区花岗岩纹理
(WorldView-2 B3(R),B2(G),B1(B)真彩色合成图像)
Fig.3  3个片区水系与三维地形叠合图
(ETM B7(R),B4(G),B2(B)假彩色合成影像)
Fig.4  方解石和石膏的反射率光谱曲线及ASTER重采样光谱曲线
Fig.5  3个片区碳酸盐岩和石膏分布情况
(ETM B7(R),B4(G),B2(B)假彩色合成影像)
Fig.6  野外验证照片
[1] 余达淦, 吴仁贵, 陈培荣. 铀资源地质学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2004.
Yu D G, Wu R G, Chen P R. Uranium geology[M]. Harbin: Harbin Engineering University Press, 2004.
[2] Butt C R M, Mann A W, Horwitz R C. Regional setting,distribution and genesis of surficial uraniumdeposits in calcretes and associates sediments in western Australia[C]// Surficial Uranium Deposits,IAEA TECDOC-322.IAEA,Vienna, 1984:121-127.
[3] Subhash J, Ian C R, Evgeniy B, et al. Basin-related uranium mineral systems in Australia:A review of critical features[J]. Ore Geo-logy Reviews, 2015, 76:360-394.
[4] Carlisle D. Concentration of uranium and vanadium in calcretes and gypcretes[J]. Geological Society, 1983, 11:185-195.
doi: 10.1144/GSL.SP.1983.011.01.19
[5] Arakel A V. Carnotite mineralization in inland drainage areas of Australia[J]. Ore Geology Reviews, 1988, 3 (1-3):289-311.
doi: 10.1016/0169-1368(88)90023-6
[6] Bowell R J, Booysens M, Pedley A, et al. Characterization of carnotite uranium deposit in Calcrete Channels,Trekkopje,Namibia[C]// Proceedings of Africa Uncovered:Mineral Resources for the Future,SEG-GSSA Conference, 2008:114-121.
[7] Hou B, Fabris, A J, Keeling, J L, et al. Cainozoic palaeochannels hosted uranium and current exploration methods,South Australia[J]. MESA Journal, 2007(46):34-39.
[8] 车永飞, 张云龙, 赵英俊, 等. 航空γ能谱测量数据在西澳伊尔岗地区钙结岩型铀矿勘查中的应用[J]. 铀矿地质, 2015, 31(1):44-51.
Che Y F, Zhang Y L, Zhao Y J, et al. Application of airborne spectrometry data to the exploration of calcrete-hosted uranium deposit in Yilgarn area western Australia[J]. Uranium Geology, 2015, 31(1): 44-51.
[9] 顾大钊, 许志斌, 范洪海, 等. 纳米比亚不同类型铀矿床成因初探[J]. 矿产勘查, 2015, 6(4):471-477.
Gu D Z, Xu Z B, Fan H H, et al. Discussion of deposit genesis of different types of uranium deposits in Namibia[J]. Mineral Exploration, 2015, 6(4):471-477.
[10] 李克让. 西北地区钙结岩(膏结岩)特征及铀成矿条件初析[J]. 铀矿地质, 1988, 4(1):14-18.
Li K R. The characteristics of calcrete(Gypcrete) and a preliminary analysis of uranium ore forming conditions in northwest district of China[J]. Uranium Geology, 1988, 4(1):14-18.
[11] 李克让. 西北钙(膏)结岩型铀矿化特征和成矿条件[J]. 华东地质学院学报, 1990, 13(2):24-30.
Li K R. Feature of uranium mineralization and mineral-formation condition of callche type in Northwest[J]. Journal of East China Institute of Technology, 1990, 13(2): 24-30.
[12] Fares H, Philip G, Abdulaty S. Metallogenic evolution of uranium deposits in the middle east and north Africa deposits[J]. Journal of African Earth Sciences, 2016, 114: 30-42.
doi: 10.1016/j.jafrearsci.2015.11.009
[13] Rishikesh B, Kalimuthu R, Ramakrishnan D. Spectral pathways for exploration of secondary uranium:An investigation in the desertic tracts of Rajasthan and Gujarat,India[J]. Advances in Space Research, 2015, 56:1613-1626.
doi: 10.1016/j.asr.2015.07.015
[14] Johnson, P R. Explanatory notes to the map of proterozoic geology of western Saudi Arabia[R]. Saudi Geological Survey Technical Report SGS-TR-2006-4, 2006:62.
[15] Al-Anazi E, Al-Saleh A. Surface dispersion of uranium in the Al-Hayt area,NE Arabian shield[J]. Journal of Environmental Radioactivity, 2013, 124:214-226.
doi: 10.1016/j.jenvrad.2013.05.010 pmid: 23827231
[16] Quick J E, Doebrich J L. Geologic map of the Wadi Ash Shu’bah Quadrangle,sheet 26E,kingdom of Saudi Arabia(Scale 1:250 000,with text)[M]. Saudi Arabian Deputy Ministry for MineralResources Geoscience Map GM 108C, 1986:23.
[17] 娄峰, 李宏卫, 陈光明, 等. 花岗岩演化与铀钍元素富集的关系: 以粤北贵东岩体为例[J]. 地学前缘, 2011, 18(1): 110-117.
Lou F, Li H W, Chen G M, et al. The relationship between granite evolution and uranium thorium enrichment:An example from the Guidong granite body,north Guangdong Province[J]. Earth Science Frontiers, 2011, 18(1):110-117.
[18] 叶发旺. ASTER数据与ETM数据蚀变信息提取的对比研究——以巴什布拉克铀矿区油气还原蚀变分析为例[J]. 地球信息科学学报, 2009, 11(3):274-281.
Ye F W. Discussion on applicational comparison between new type of multi-spectral ASTER data and ETM+data:A case study on extracting the reduced alteration information of gas and oil in Bashibulake uranium ore district[J]. Journal of Geo-Information Science, 2009, 11(3):274-281.
doi: 10.3724/SP.J.1047.2009.00274
[19] 王俊虎, 张杰林, 张静波. 基于ASTER热红外数据的SiO2含量反演在某矿田信息提取中的应用[J]. 铀矿地质, 2010, 26(1): 306-311.
Wang J H, Zhang J L, Zhang J B, et al. SiO2 content retrieving based on ASTER thermal data and its application in substracting metallogenic factor of a uranium deposit[J]. Uranium Geology, 2010, 26(1):306-311.
[20] 唐淑兰, 曹建农, 王国强, 等. 结合小波包变换和随机森林的ASTER蚀变信息提取[J]. 地质学报, 2021, 95(3): 924-933.
Tang S L, Cao J N, Wang G Q, et al. Aster alteration information extraction based on wavelet packet transform and random forest[J]. Acta Geologica Sinica, 2021, 95(3): 924-933.
[21] 韩海辉, 王艺霖, 张转, 等. 东昆仑浅覆盖区遥感蚀变异常提取与分析[J]. 遥感信息, 2018, 33(4): 72-79.
Han H H, Wang Y L, Zhang Z, et al. Extraction and analysis of remote sensing alteration anomaly at shallow loess covering area in East Kunlun[J]. Remote Sensing Information, 2018, 33(4): 72-79.
[22] 鲁立辉, 许荣科, 郑有业, 等. 基于OLI和ASTER数据的蚀变信息提取分析与对比——以青海都兰通突尔铅锌多金属矿区为例[J]. 地质与勘探, 2019, 55(2): 600-607.
Lu L H, Xu R K, Zheng Y Y, et al. Analysis and comparison of extracting alteration information from OLI and ASTER data:An example of the Tongtuer Pb-Zn polymetallic deposit in Dulan,Qinghai Province[J]. Geology and Prospecting, 2019, 55(2): 600-607.
[23] 张玉君, 曾朝铭, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003, 15(2): 44-50.doi:10.6046/gtzyyg.2003.02.11.
doi: 10.6046/gtzyyg.2003.02.11
Zhang Y J, Zeng Z M, Chen W. The methods for extraction of alteration anomalies from the ETM+(TM) data and their application:Method selection and technological flow chart[J]. Remote Sensing for Land and Resources, 2003, 15(2): 44-50.doi:10.6046/gtzyyg.2003.02.11.
doi: 10.6046/gtzyyg.2003.02.11
[24] 肖晨超, 吴小娟, 王大明, 等. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.doi:10.6046/gtzyyg.2019.04.16.
doi: 10.6046/gtzyyg.2019.04.16
Xiao C C, Wu X J, Wang D M, et al. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory:A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land and Resources, 2019, 31(4):120-127.doi:10.6046/gtzyyg.2019.04.16.
doi: 10.6046/gtzyyg.2019.04.16
[25] Al-Anazi E A. Uranium pollution in the Al-Hayt area,south of the city of Hail.M.Sc.dissertation[R]. King Saud University,Riyadh (unpublished), 2005:212.
[26] Al-Jarallah M I. Radon exhalation from granites used in Saudi Arabia[J]. Journal of Environmental Radioactivity, 2001, 53:91-98.
pmid: 11378931
[1] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[2] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
[3] 王建强, 邹朝晖, 刘荣波, 刘志松. 基于U2-Net深度学习模型的沿海水产养殖塘遥感信息提取[J]. 自然资源遥感, 2023, 35(3): 17-24.
[4] 唐晖, 邹娟, 尹向红, 余姝辰, 贺秋华, 赵动, 邹聪, 罗建强. 基于高分遥感的洞庭湖区河湖采砂监管及典型案例分析[J]. 自然资源遥感, 2023, 35(3): 302-309.
[5] 于航, 安娜, 汪洁, 邢宇, 许文佳, 步凡, 王晓红, 杨金中. 黔西南采煤塌陷区高分遥感动态监测——以六盘水市煤矿采空塌陷区为例[J]. 自然资源遥感, 2023, 35(3): 310-318.
[6] 王静, 王佳, 徐江琪, 黄邵东, 刘东云. 改进遥感生态指数的典型海岸带城市生态环境质量评价——以湛江市为例[J]. 自然资源遥感, 2023, 35(3): 43-52.
[7] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[8] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[9] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[10] 方贺, 张育慧, 何月, 李正泉, 樊高峰, 徐栋, 张春阳, 贺忠华. 浙江省植被生态质量时空变化及其驱动因素分析[J]. 自然资源遥感, 2023, 35(2): 245-254.
[11] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[12] 马世斌, 皮英楠, 王佳, 张焜, 李生辉, 彭玺. 基于遥感的绿色勘查高效监管方法体系研究[J]. 自然资源遥感, 2023, 35(2): 255-263.
[13] 王平. 热红外遥感技术在钢铁去产能监测中的应用[J]. 自然资源遥感, 2023, 35(2): 271-276.
[14] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[15] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发