Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (2): 256-264    DOI: 10.6046/zrzyyg.2022439
  海岸带空间资源及生态健康遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
耦合遥感与SWAT模型的岸边植被带消减面源污染效能研究
刘翼遥1(), 吴太夏1(), 王树东2, 鞠茂森3
1.河海大学地球科学与工程学院,南京 211100
2.中国科学院空天信息创新研究院,北京 100000
3.河海大学河长制研究与培训中心,南京 210098
Exploring the performance of riparian zones in reducing non-point source pollution by coupling remote sensing with the SWAT model
LIU Yiyao1(), WU Taixia1(), WANG Shudong2, JU Maosen3
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100000, China
3. Research and Training Center for River Chief System, Hohai University, Nanjing 210098, China
全文: PDF(14103 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 岸边带正广泛应用于世界各地的面源污染治理项目,遥感也逐渐成为面源污染研究的重要手段,但如何将遥感技术与岸边带结合使截污效果更佳仍然是一个挑战。该文以云南省星云湖流域为例,耦合遥感建立土壤水分评估模型(soil and water assessment tool, SWAT),通过改变土地利用类型的方式建立岸边带进行情景模拟,研究不同宽度和植被类型对污染物消减效果的差异。结果发现,设置岸边带对氮元素的截留效果好于磷元素; 当岸边带植被类型不同时,林地的截污效果明显好于草地,并随着岸边带宽度的增加污染物消减率逐渐变大。设置30 m林地加30 m草地的岸边带可减少5.20%的总氮产量和6.03%的总磷产量,且可截留19.83%的有机氮入湖量和21.30%有机磷入湖量,在所有岸边带中截污效果最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘翼遥
吴太夏
王树东
鞠茂森
关键词 SWAT面源污染土地利用岸边带遥感    
Abstract

Riparian zones have been extensively used in non-point source pollution control projects worldwide, and remote sensing has gradually become a significant means of non-point source pollution research. However, combining remote sensing technology with riparian zones for efficient pollution interception effects is still a challenge. With the Xingyun Lake basin in Yunnan Province as the study area, this study established a soil and water assessment tool (SWAT) model by coupling with remote sensing. It created a riparian zone by changing the land use type for scenario simulation, investigating the different effects of various widths and vegetation types on pollutant reduction. The key findings are as follows: ①The created riparian zone exhibited better interception effects for nitrogen compared to phosphorus; ② Concerning different vegetation types in the riparian zone, forest land manifested significantly better pollution interception effects than grassland. Moreover, the pollutant reduction rate gradually increased with an increase in the width of the riparian zone; ③A riparian zone consisting of 30-m-wide forest land and 30-m-wide grassland can reduce total nitrogen production by 5.20% and total phosphorus production by 6.03% while intercepting 19.83% of organic nitrogen and 21.30% of organic phosphorus into the lake, demonstrating the optimal pollution interception effects.

Key wordsSWAT    non-point source pollution    land use    riparian zone    remote sensing
收稿日期: 2022-11-17      出版日期: 2025-05-09
ZTFLH:  TP79  
  X32  
基金资助:国家自然科学基金项目“三北工程区陆地生态系统增汇潜力及风险评估”(42141007)
通讯作者: 吴太夏(1979-),男,博士,教授,研究方向为水资源环境遥感监测与评估、高光谱遥感等。Email: wutx@hhu.edu.cn
作者简介: 刘翼遥(1998-),男,硕士研究生,研究方向为面源污染、环境遥感。Email: liuyiyao@hhu.edu.cn
引用本文:   
刘翼遥, 吴太夏, 王树东, 鞠茂森. 耦合遥感与SWAT模型的岸边植被带消减面源污染效能研究[J]. 自然资源遥感, 2025, 37(2): 256-264.
LIU Yiyao, WU Taixia, WANG Shudong, JU Maosen. Exploring the performance of riparian zones in reducing non-point source pollution by coupling remote sensing with the SWAT model. Remote Sensing for Natural Resources, 2025, 37(2): 256-264.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022439      或      https://www.gtzyyg.com/CN/Y2025/V37/I2/256
Fig.1  研究区地理位置
数据类型 数据名称 格式 数据内容 来源
空间数据 DEM grid 高程、坡度、坡向 地理空间数据云
土地
利用
grid 土地利用类型 FROM-GLC 2017v1
土壤
类型
grid 土壤类型 世界土壤数据库HWSD
水文
数据
grid 每月径流量 ECMWF River discharge and related historical data from the Global Flood Awareness System数据集
属性数据 土壤
属性
DBase表 土壤密度、饱和导水率、持水率、颗粒含量等 世界土壤数据库HWSD
气象
数据
txt 最高最低气温、日降雨量、相对湿度、太阳辐射、风速等 CMADS数据集
水质
数据
txt 总氮、总磷 监测站点实测
Tab.1  SWAT模型输入数据表
Fig.2  星云湖流域土地利用类型及土壤类型
敏感性
排序
参数 定义 所在
位置
范围 取值
1 v_ALPHA_BF 基流α系数 .gw -0.164 8~
0.224 8
0.049 48
2 v_SFTMP 降雪气温 .bsn -0.336 36~
3.583
2.733 80
3 v_GW_DELAY 地下水滞后系数 .gw 289.07~
526.75
435.639 00
4 r_GW_REVAP 地下水再蒸发系数 .gw -1.482~
-0.485
-0.767 20
5 r_SURLAG 地表径流滞后系数 .bsn -0.056~
0.034
0.026 50
Tab.2  径流参数敏感性及取值结果
敏感性
排序
参数 定义 所在
位置
范围 取值
1 v_ERORGP 有机磷富集率 .hru 2.208 23~
6.958 44
5.794 64
2 r_CANMX 最大树冠蓄水量 .hru -0.388 16~
0.216 73
0.110 88
3 r_USLE_P USLE方程水土保持措施因子 .mgt -0.818~
0.075 15
-0.322 30
4 v_CDN 反硝化指数速率系数 .bsn 1.407 31~
4.335 55
3.178 90
5 r_OV_N 地面流量的曼宁n .hru -0.430 43~
0.201 86
0.135 45
Tab.3  总氮总磷参数敏感性及取值结果
Fig.3  不同岸边带情景下的星云湖
Fig.4  径流、总氮、总磷校准期和验证期实测值和模拟值拟合结果
变量 校准期 验证期
R 2 NSE R 2 NSE
径流 0.79 0.78 0.70 0.64
总氮 0.80 0.79 0.84 0.78
总磷 0.86 0.83 0.64 0.56
Tab.4  星云湖流域各变量月尺度模拟校准和验证结果
流失强度 总氮 总磷
轻度 [0,4.706) [0,1.980)
较轻 [4.706,10.276) [1.980,5.121)
中度 [10.276,15.195) [5.121,6.605)
较重 [15.195,21.226) [6.605,7.952)
重度 [21.226,55.704] [7.952,14.564]
Tab.5  关键源区等级划分表
Fig.5  星云湖流域总氮和总磷关键源区
Fig.6  不同植被缓冲带的总氮总磷消减效果
Fig.7  不同植被缓冲带的有机氮磷入湖量消减效果
Fig.8  各关键源区每种岸边带情景下总氮总磷消减效果
[1] 朱兆良, 孙波, 杨林章, 等. 我国农业面源污染的控制政策和措施[J]. 科技导报, 2005, 23(4):47-51.
Zhu Z L, Sun B, Yang L Z, et al. Policy and countermeasures to control non-point pollution of agriculture in China[J]. Science & Technology Review, 2005, 23(4):47-51.
[2] 叶兆木, 彭瑶, 赵芳, 等. 水环境现状调查及评估方法分析[J]. 环境影响评价, 2020, 42(3):92-96.
Ye Z M, Peng Y, Zhao F, et al. Investigation of water environment status and analysis of assessment methods[J]. Environmental Impact Assessment, 2020, 42(3):92-96.
[3] 国家统计局. 第一次全国污染源普查公报[R]. 北京, 2010.
National Bureau of Statistics. Bulletin of the first national pollution source survey[R]. Beijing, 2010.
[4] 国家发展和改革委员会, 环境保护部, 住房和城乡建设部, 等. 太湖流域水环境综合治理总体方案(2013年修编)[EB/OL]. https://www.ndrc.gov.cn/fzggw/jgsj/dqs/sjdt/201401/W020190909483338371074.pdf.
National Development and Reform Commission, Ministry of Environmental Protection, Ministry of Housing and Urban Rural Development, et al. Overall plan for comprehensive treatment of water environment in Taihu Lake basin (revised in 2013) [EB/OL]. https://www.ndrc.gov.cn/fzggw/jgsj/dqs/sjdt/201401/W020190909483338371074.pdf.
[5] Tu J. Spatially varying relationships between land use and water quality across an urbanization gradient explored by geographically weighted regression[J]. Applied Geography, 2011, 31(1):376-392.
[6] Sweeney B W, Bott T L, Jackson J K, et al. Riparian deforestation,stream narrowing,and loss of stream ecosystem services[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39):14132-14137.
[7] MacFarlane W W, Gilbert J T, Jensen M L, et al. Riparian vegetation as an indicator of riparian condition:Detecting departures from historic condition across the North American West[J]. Journal of Environmental Management, 2017, 202(Pt 2):447-460.
[8] Hoang L, van Griensven A, Mynett A. Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale[J]. Environmental Modelling & Software, 2017, 93(C):163-179.
[9] Krysanova V, White M. Advances in water resources assessment with SWAT:An overview[J]. Hydrological Sciences Journal, 2015:1-13.
[10] Malagó A, Bouraoui F, Vigiak O, et al. Modelling water and nutrient fluxes in the Danube River basin with SWAT[J]. The Science of the Total Environment, 2017, 603/604:196-218.
[11] 夏军, 翟晓燕, 张永勇. 水环境非点源污染模型研究进展[J]. 地理科学进展, 2012, 31(7):941-952.
Xia J, Zhai X Y, Zhang Y Y. Progress in the research of water environmental nonpoint source pollution models[J]. Progress in Geography, 2012, 31(7):941-952.
doi: 10.11820/dlkxjz.2012.07.013
[12] Turpin N, Bontems P, Rotillon G, et al. AgriBMPWater:Systems approach to environmentally acceptable farming[J]. Environmental Modelling & Software, 2005, 20(2):187-196.
[13] 常舰. 基于SWAT模型的最佳管理措施(BMPs)应用研究——以西苕溪流域为例[D]. 杭州: 浙江大学, 2017.
Chang J. Evaluation for the effectiveness of best management practices(BMPs) based on SWAT model[D]. Hangzhou: Zhejiang University, 2017.
[14] Ryu J, Cho J, Kim I J, et al. Technical note:Enhancement of SWAT-REMM to simulate reduction of total nitrogen with riparian buffer[J]. Transactions of the ASABE, 2011, 54(5):1791-1798.
[15] Jang S S, Ahn S R, Kim S J. Evaluation of executable best management practices in Haean highland agricultural catchment of South Korea using SWAT[J]. Agricultural Water Management, 2017, 180:224-234.
[16] 王敏, 张雨桐, 李奇宸, 等. 安徽省兆河流域非点源污染模拟及最佳管理措施[J]. 水土保持通报, 2021, 41(5):127-136,153.
Wang M, Zhang Y T, Li Q C, et al. Simulation and optimal management of non-point source pollution in Zhaohe small watershed in Anhui Province[J]. Bulletin of Soil and Water Conservation, 2021, 41(5):127-136,153.
[17] 云南省统计局. 云南统计年鉴-2019(总第35期)[M]. 北京: 中国统计出版社, 2019.
Yunnan Provincial Bureau of Statistics. Yunnan statistical yearbook-2019[M]. Beijing: China Statistics Press, 2019.
[18] 陈杨. 星云湖水体环境与氮磷空间分布特征研究[D]. 昆明: 云南师范大学, 2020.
Chen Y. Characteristics of water environments and spatial distribution of nitrogen and phosphorus in Xingyun Lake[D]. Kunming: Yunnan Normal University, 2020.
[19] 云南省环境保护厅. 1998—2018云南省环境状况公报[EB/OL]. http://sthjt.yn.gov.cn/hjzl/hjzkgb/.
Yunnan Provincial Department of Environmental Protection. 1998-2018Yunnan environmental status bulletin[EB/OL]. http://sthjt.yn.gov.cn/hjzl/hjzkgb/.
[20] Gong P, Liu H, Zhang M, et al. Stable classification with limited sample:Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64(6):370-373.
[21] Harrigan S, Zsoter E, Barnard C, et al. River discharge and related historical data from the Global Flood Awareness System,v3.1,Copernicus Climate Change Service (C3S) Climate Data Store (CDS)[Z]. 2021.
[22] Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment part Ⅰ:Model development1[J]. Journal of the American Water Resources Association, 1998, 34(1):73-89.
[23] 郭伟, 陈兴伟, 林炳青. SWAT模型参数对土地利用变化的响应及其对不同时间尺度径流模拟的影响[J]. 生态学报, 2021, 41(16):6373-6383.
Guo W, Chen X W, Lin B Q. Response of SWAT model parameters to land use change and its effects on the simulation of runoff with different time scales[J]. Acta Ecologica Sinica, 2021, 41(16):6373-6383.
[24] 张招招, 程军蕊, 毕军鹏, 等. 甬江流域土地利用方式对面源磷污染的影响:基于SWAT模型研究[J]. 农业环境科学学报, 2019, 38(3):650-658.
Zhang Z Z, Cheng J R, Bi J P, et al. Impact of land use on non-point sources of phosphorus in the Yong River basin:SWAT model analysis[J]. Journal of Agro-Environment Science, 2019, 38(3):650-658.
[25] Neitsch S, Arnold J, Kiniry J, et al. Soil and water assessment tool theoretical documentation,version 2009[Z]. Texas Water Resources Institute Technical Report, 2011.
[26] 陈海涛, 曹向真. 基于SUFI-2参数最适置信区间的参数优化方法结果对比分析[J]. 节水灌溉, 2021(6):24-30.
Chen H T, Cao X Z. Comparative analysis of the results of parameter optimization methods based on the optimal confidence interval of SUFI-2 parameters[J]. Water Saving Irrigation, 2021(6):24-30.
[27] 李振炜, 于兴修, 姚孝友, 等. 农业非点源污染关键源区识别方法研究进展[J]. 生态学杂志, 2011, 30(12):2907-2914.
Li Z W, Yu X X, Yao X Y, et al. Identification approaches of critical source area of agricultural non-point source pollution:A review[J]. Chinese Journal of Ecology, 2011, 30(12):2907-2914.
[28] 朱鹤健, 陈健飞, 陈松林, 等. 土壤地理学[M].2版. 北京: 高等教育出版社, 2010.
Zhu H J, Chen J F, Chen S L, et al. Pedogeography[M].2nd ed. Beijing: Higher Education Press, 2010.
[29] Haycock N E, Pinay G. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter[J]. Journal of Environmental Quality, 1993, 22(2):273-278.
[30] Osborne L L, Kovacic D A. Riparian vegetated buffer strips in water-quality restoration and stream management[J]. Freshwater Biology, 1993, 29(2):243-258.
[31] Sabater S, Butturini A, Clement J C, et al. Nitrogen removal by riparian buffers along a European climatic gradient:Patterns and factors of variation[J]. Ecosystems, 2003, 6(1):20-30.
[32] 汤家喜, 孙丽娜, 孙铁珩, 等. 河岸缓冲带对氮磷的截留转化及其生态恢复研究进展[J]. 生态环境学报, 2012, 21(8):1514-1520.
doi: 10.16258/j.cnki.1674-5906(2012)08-1514-07
Tang J X, Sun L N, Sun T H, et al. Research advances on retaining and transformation of N and P and ecological restoration of riparian buffer zone[J]. Ecology and Environmental Sciences, 2012, 21(8):1514-1520.
[33] 申小波. 草本植被过滤带对主要农业面源污染物的拦截效果研究[D]. 长沙: 中南林业科技大学, 2014.
Shen X B. Study on interception effects of the main agricultural non-point source pollution by grass vegetative filter strips[D]. Changsha: Central South University of Forestry & Technology, 2014.
[34] 何聪. 混播草皮缓冲带农业面源污染拦截效果的试验研究[D]. 扬州: 扬州大学, 2012.
He C. Mixture sowing turf buffer zone for agricultural non-point source pollution interception effect experimental study[D]. Yangzhou: Yangzhou University, 2012.
[1] 谢国雪, 黄启厅, 杨绍锷, 梁永检, 覃泽林, 苏秋群. 星地协同下地块尺度柑橘黄龙病监测技术研究[J]. 自然资源遥感, 2025, 37(2): 30-38.
[2] 肖文菊, 杨颖频, 吴志峰. 多云多雨区耕地撂荒多源遥感协同监测[J]. 自然资源遥感, 2025, 37(2): 39-48.
[3] 朱登新, 涂杰楠, 孙海冰, 韩振傑, 童立强, 郭兆成, 余江宽, 阎书豪, 贺鹏, 朱俊杰. 基于多源卫星数据亚东河流域冰湖溃决灾害危险性分析[J]. 自然资源遥感, 2025, 37(2): 96-107.
[4] 何晓军, 罗杰. 结合上下文与类别感知特征融合的高分遥感图像语义分割[J]. 自然资源遥感, 2025, 37(2): 1-10.
[5] 史俊波, 张杰, 侯娜, 张辉善, 丁晓平, 杜建军, 朱海洋. 川西可尔因稀有金属矿集区遥感地质找矿应用[J]. 自然资源遥感, 2025, 37(2): 117-127.
[6] 柴新宇, 吴献文, 陈晓辉, 王玉, 赵星涛. 耦合Markov与FLUS模型的珠三角城市群土地利用多情景模拟预测[J]. 自然资源遥感, 2025, 37(2): 140-147.
[7] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[8] 张静, 胡晓佳, 王威, 陈东磊, 黄旭红, 杨俊泉. 张北地区自然资源及生态状况综合评价与分析[J]. 自然资源遥感, 2025, 37(2): 164-172.
[9] 谢宜嘉, 杨倍倍, 张镇, 陈佳, 王喆, 孟令奎. 2000—2022年北京市植被春季物候期变化特征分析[J]. 自然资源遥感, 2025, 37(2): 185-193.
[10] 聂诗音, 刘严松, 李会玲, 薛凯伦, 沈杜衡, 何博宇. 基于图谱耦合的高寒湿地土地类型识别与分类[J]. 自然资源遥感, 2025, 37(2): 204-211.
[11] 余姝辰, 邱罗, 贺秋华, 金小燕, 李嘉宝, 余德清. 基于多源遥感的洞庭湖洲滩时空演变研究[J]. 自然资源遥感, 2025, 37(2): 228-234.
[12] 奥勇, 汪雅, 王晓峰, 吴京盛, 张亦恒, 李雪娇. 2001—2020年间河南省郑州市生态环境质量时空变化及驱动因素分析[J]. 自然资源遥感, 2025, 37(1): 102-112.
[13] 王检萍, 陈美球. 江西省南昌市土地利用冲突识别及其分区调控[J]. 自然资源遥感, 2025, 37(1): 113-121.
[14] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[15] 石海岗, 梁春利, 薛庆, 张恩, 章新益, 张建永, 张春雷, 程旭. 基于卫星遥感的秦山核电周边海域温度分布研究[J]. 自然资源遥感, 2025, 37(1): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发