Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (5): 44-52    DOI: 10.6046/zrzyyg.2024301
  湖泊生态环境遥感监测专栏 本期目录 | 过刊浏览 | 高级检索 |
新丰江水库CODMn多时相遥感监测
旷志渊1,2,3,4(), 邓孺孺1,2,3,4()
1.中山大学地理科学与规划学院,广州 511400
2.广东省水环境遥感监测工程技术研究中心,广州 511400
3.南方海洋科学与工程广东省实验室(珠海),珠海 519082
4.广东省城市化与地理环境空间模拟重点实验室,广州 510275
Multi-temporal remote sensing monitoring of chemical oxygen demand in Xinfengjiang Reservoir
KUANG Zhiyuan1,2,3,4(), DENG Ruru1,2,3,4()
1. School of Geography and Planning,Sun Yat-sen University,Guangzhou 511400,China
2. Guangdong Engineering Research Center of Water Environment Remote Sensing Monitoring,Guangzhou 511400,China
3. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai 519082,China
4. Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation,Guangzhou 510275,China
全文: PDF(6047 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了保护新丰江水库水质,监测分析库区富营养化风险,该文基于水下辐射传输过程,综合考虑影响水下光场的叶绿素a、总悬浮物和高锰酸钾指数(chemical oxygen demand,CODMn)3种水质要素,建立了一种遥感反演CODMn的分析模型,并对水库及周边河流的富营养化现象进行多时像监测。精度验证结果显示,该模型的均方根误差(root mean square error,RMSE)为0.682 5 mg/L,平均绝对百分比误差(mean absolute percentage error,MAPE)为25.219 7%,证明该模型在复杂水域的准确性。对新丰江水库水质的时空分析则表明,水库主体水质状况长期保持良好,但由于存在大量的渔场养殖和人为排放,忠信河的水质状况存在较为频繁的富营养化现象,这可能对整个水库的水质构成潜在威胁。对忠信河重点监测,及时处理违规排放行为,并在流域建设植被排水沟等一系列生态工程,可有效减少农业面源污染输入,从而促进新丰江水库生态环境的恢复和改善。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
旷志渊
邓孺孺
关键词 水质反演新丰江水库CODMn有机污染    
Abstract

To protect the water quality of the Xinfengjiang Reservoir and monitor the eutrophication risk,this study developed an analytical model for remote sensing inversion of chemical oxygen demand (CODMn) based on the underwater radiative transfer process. This model comprehensively takes into account three water quality parameters that influence the underwater light field:chlorophyll a,total suspended matter,and CODMn. The model was applied to conduct multi-temporal monitoring of eutrophication in the reservoir and its surrounding rivers. Through accuracy verification,the model achieved a root mean square error of 0.68 and a mean absolute percentage error of 25.22%,demonstrating its reliability in complex water environments. The spatiotemporal analysis of the water quality in Xinfengjiang Reservoir revealed the consistent good quality of the main body over the long term. However,due to extensive aquaculture and anthropogenic discharges,the Zhongxin River exhibited frequent eutrophication,which may pose a potential threat to the overall water quality of the reservoir. It is recommended to enhance monitoring of the Zhongxin River,promptly address illegal discharges,and implement ecological engineering measures such as vegetative drainage ditches in the watershed. These efforts can effectively reduce agricultural non-point source pollution,contributing to the restoration and improvement of the ecological environment of Xinfengjiang Reservoir.

Key wordswater quality inversion    Xinfengjiang Reservoir    chemical oxygen demand (CODMn    organic pollution
收稿日期: 2024-09-14      出版日期: 2025-10-28
ZTFLH:  TP79  
基金资助:南方海洋科学与工程广东省实验室(珠海)资助项目(311024015);国家自然科学基金项目“水中典型重金属:铜、铁和镉浓度遥感反演机理及其敏感性研究”(41901352);“大气复杂颗粒物的散射特征及遥感反演模型”(41071230);广东省省级科技计划项目“珠江三角洲大气污染高分遥感监测及预警”(2017B020216001);广东省基础与应用基础研究基金项目“基于辐射传输理论的水体重金属水面光谱反演模型构建——以广东省北江流域为例”(2020A1515010780);“面向广东海岸线和海域海岛的海洋及环境数据立体感知与监测共享方法研究”(2022B1515130001);广州市科技计划项目“广州市土壤重金属遥感探测机理研究——以铜和镉为例”(202102020454)
通讯作者: 邓孺孺(1963-),男,博士,教授,主要从事水质遥感与大气环境遥感研究。Email:esdrr@mail.sysu.edu.cn
作者简介: 旷志渊(2000-),男,硕士研究生,主要研究方向为水质遥感。Email:kuangzhy5@mail2.sysu.edu.cn
引用本文:   
旷志渊, 邓孺孺. 新丰江水库CODMn多时相遥感监测[J]. 自然资源遥感, 2025, 37(5): 44-52.
KUANG Zhiyuan, DENG Ruru. Multi-temporal remote sensing monitoring of chemical oxygen demand in Xinfengjiang Reservoir. Remote Sensing for Natural Resources, 2025, 37(5): 44-52.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024301      或      https://www.gtzyyg.com/CN/Y2025/V37/I5/44
Fig.1  广东省新丰江水库
Fig.2  太阳光路示意图
Fig.3  各组分水质要素吸收系数
Fig.4  各组分水质要素后向散射系数
Fig.5  外业采样站点
样本 斜率 截距 R2 RMSE/
(mg·L-1
MAPE/%
E1 0.801 2 0.411 9 0.355 8 0.682 5 25.219 7
E2 1.222 1 -0.116 3 0.618 4 0.235 6 13.697 7
E3 1.145 7 -0.056 6 0.466 8 0.475 6 16.468 1
Tab.1  回归精度评价结果
Fig.6  水质反演结果回归
Fig.7  2017—2023年CODMn水质反演结果
Fig.8  忠信河高分影像
Fig.9  新丰江水库站点监测情况
Fig.10  2021年CODMn水质反演结果
Fig.11  柏浦河水质状况
[1] Xie W Q, Gong Y X. Measurement of permanganate index in environmental water via indirect phase-conversion strategy[J]. Journal of Chromatography A, 2024, 1728:464987.
[2] Li J, Luo G B, He L J, et al. Analytical approaches for determining chemical oxygen demand in water bodies:A review[J]. Critical Reviews in Analytical Chemistry, 2018, 48(1):47-65.
[3] Guan Q, Feng L, Hou X J, et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations[J]. Remote Sensing of Environment, 2020, 246:111890.
[4] Ambrose-Igho G, Seyoum W M, Perry W L, et al. Spatiotemporal analysis of water quality indicators in small lakes using sentinel-2 satellite data:Lake Bloomington and evergreen lake,central Illinois,USA[J]. Environmental Processes, 2021, 8(2):637-660.
[5] Yang H B, Kong J L, Hu H H, et al. A review of remote sensing for water quality retrieval:Progress and challenges[J]. Remote Sen-sing, 2022, 14(8):1770.
[6] Lee Z P, Carder K L, Hawes S K, et al. Model for the interpretation of hyperspectral remote-sensing reflectance[J]. Applied Optics, 1994, 33(24):5721-5732.
doi: 10.1364/AO.33.005721 pmid: 20935974
[7] Neil C, Spyrakos E, Hunter P D, et al. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types[J]. Remote Sensing of Environment, 2019, 229:159-178.
doi: 10.1016/j.rse.2019.04.027
[8] Guo Q, Zhang D J, Cao L J, et al. A remote sensing method to inverse chemical oxygen demand in Qinghai Lake[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021:3697-3700.
[9] Yang B, Liu Y P, Ou F P, et al. Temporal and spatial analysis of COD concentration in east Dongting Lake by using of remotely sensed data[J]. Procedia Environmental Sciences, 2011, 10:2703-2708.
[10] Sharaf E D E, Zhang Y, Suliman A. Mapping concentrations of surface water quality parameters using a novel remote sensing and artificial intelligence framework[J]. International Journal of Remote Sensing, 2017, 38(4):1023-1042.
[11] Cai X L, Li Y M, Lei S H, et al. A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters:A case study in inland lake waters in Eastern China[J]. Science of The Total Environment, 2023, 856:158869.
[12] 陈瑞, 周雯, 乔永民, 等. 新丰江水库沉积物磷赋存形态及分布特征[J]. 水生态学杂志, 2025, 46(1):133-142.
Chen R, Zhou W, Qiao Y M, et al. Phosphorus speciation and distribution in the sediments of Xinfeng River Reservoir[J]. Journal of Hydroecology, 2025, 46(1):133-142.
[13] 胡传鹤. 广东省新丰江水库集水区小流域农田化肥氮磷流失及环境归趋研究[D]. 西安: 陕西科技大学, 2023.
Hu C H. Study on the loss of fertilizer,nitrogen and phosphorus from farmland in a small watershed in the catchment area of Xinfengjiang reservoir,Guangdong province and its environmental fate[D]. Xi’an: Shaanxi University of Science and Technology, 2023.
[14] Ansper A, Alikas K. Retrieval of chlorophyll a from Sentinel-2 MSI data for the European union water framework directive reporting purposes[J]. Remote Sensing, 2019, 11(1):64.
[15] Stavn R H. Light attenuation in natural waters:Gershun’s law,lambert-beer law,and the mean light path[J]. Applied Optics, 1981, 20(14):2326_1-2327.
[16] Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters.I.A semianalytical model[J]. Applied Optics, 1998, 37(27):6329-6338.
pmid: 18286131
[17] 邓孺孺, 何颖清, 秦雁, 等. 分离悬浮质影响的光学波段(400—900nm)水吸收系数测量[J]. 遥感学报, 2012, 16(1):174-191.
Deng R R, He Y Q, Qin Y, et al. Pure water absorption coefficient measurement after eliminating the impact of suspended substance in spectrum from 400 nm to 900 nm[J]. Journal of Remote Sen-sing, 2012, 16(1):174-191.
[18] 邓孺孺, 何颖清, 秦雁, 等. 近红外波段(900—2500nm)水吸收系数测量[J]. 遥感学报, 2012, 16(1):192-206.
Deng R R, He Y Q, Qin Y, et al. Measuring pure water absorption coefficient in the near-infrared spectrum(900—2500 nm)[J]. Journal of Remote Sensing, 2012, 16(1):192-206.
[19] 何颖清, 邓孺孺, 陈启东, 等. 基于ASD光谱仪的悬浮泥沙光学衰减系数研究[J]. 中山大学学报(自然科学版), 2011, 50(3):134-140.
He Y Q, Deng R R, Chen Q D, et al. Diffuse attenuation coefficient of suspended sediment based on ASD spectrometer[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011, 50(3):134-140.
[20] Wang M H. Atmospheric correction for remotely-sensed ocean-co-lour products[M]// Dartmouth,Canada:IOCCG,2010:5-6
[21] 刘小平, 邓孺孺, 彭晓鹃. 基于TM影像的快速大气校正方法[J]. 地理科学, 2005,(1):87-93.
Liu X P, Deng R R, Peng X J. A fast atmospheric correction met-hod based on TM imagery[J]. Scientia Geographica Sinica, 2005,(1):87-93.
[22] 齐志新, 邓孺孺. 多暗像元大气校正方法[J]. 国土资源遥感, 2007, 19(2):16-19,30,98.doi:10.6046/gtzyyg.2007.02.04.
Qi Z X, Deng R R. The atmospheric correction method for nonhomogeneous atmosphere based on many dark objects[J]. Remote Sensing for Land and Resources, 2007, 19(2):16-19,30,98.doi:10.6046/gtzyyg.2007.02.04.
[1] 吕林伟, 王瑞, 许林涛, 黄诗乔, 黄帅帅, 林敏, 贺一波, 何倩, 晏慧能, 陈尚波. 基于神经网络的InSAR/GNSS深度融合尾矿库坝体时序监测及预测研究[J]. 自然资源遥感, 2025, 37(5): 162-171.
[2] 李英龙, 邓毓弸, 孔赟珑, 陈静波, 孟瑜, 刘帝佑. 基于全色-多光谱双流卷积网络的端到端地物分类方法[J]. 自然资源遥感, 2025, 37(5): 152-161.
[3] 王璐, 姬永杰, 董文全, 张王菲. 结合Sentinel-2和GEDI数据的森林地上生物量估测和空间格局分析[J]. 自然资源遥感, 2025, 37(5): 224-232.
[4] 王杏伟, 唐康其, 刘燕, 刘欢. 融合FFT和EMHSA的双时相光学遥感影像变化检测网络[J]. 自然资源遥感, 2025, 37(5): 113-121.
[5] 朱娟娟, 黄亮, 朱莎莎. 面向高分辨率遥感影像建筑物提取的SD-BASNet网络[J]. 自然资源遥感, 2025, 37(5): 122-130.
[6] 文艺, 张玲, 孔含泉, 万祥星, 葛大庆, 刘斌. 利用C-LSTM的时序InSAR地表形变趋势分析及预测方法[J]. 自然资源遥感, 2025, 37(5): 141-151.
[7] 周玉静, 金晓媚, 马靖宣, 李晴. 青海东达布逊湖湖泊面积和水量的变化研究[J]. 自然资源遥感, 2025, 37(5): 15-23.
[8] 郎云帆, 李益敏, 李媛婷, 刘淼, 柏克冰. 基于夜光遥感的滇缅地区经济发展时空特征研究[J]. 自然资源遥感, 2025, 37(5): 233-242.
[9] 邹娟, 余姝辰, 贺秋华, 徐质彬, 尹向红, 邹聪. 1933—2024年洞庭湖注滋口三角洲时空演变特征[J]. 自然资源遥感, 2025, 37(5): 24-31.
[10] 张萍, 庞咏, 陈庆松, 杨坤, 邹祖建, 侯云花, 王彩琼, 冯思齐. 基于RSEI模型的滇西北高山峡谷区生态环境质量动态监测及驱动因子分析[J]. 自然资源遥感, 2025, 37(5): 243-253.
[11] 许颖, 张润泽, 郭兵. 2000—2020年中国植被时空变化格局及其对气候作用的滞后响应分析[J]. 自然资源遥感, 2025, 37(5): 254-266.
[12] 杨赈, 杨明龙, 李国柱, 夏永华, 俞婷, 严正飞, 李万涛. 修正水分胁迫的NPP反演结果与典型高原盆地土壤水分关系探究[J]. 自然资源遥感, 2025, 37(5): 267-277.
[13] 何威荣, 霍润斌, 李东辉, 张峰山, 王新峰. 基于GIS的安徽省自然湖泊动态变化及驱动力分析[J]. 自然资源遥感, 2025, 37(5): 32-43.
[14] 龚绍军, 陈超, 范竞. 一种考虑地物含水量和长时序遥感影像的海岸线精准定位方法[J]. 自然资源遥感, 2025, 37(5): 53-61.
[15] 文甜甜, 普运伟, 赵文翔. 一种融合上下文语义信息与边缘特征的海陆分割方法[J]. 自然资源遥感, 2025, 37(5): 62-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发