Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 173-187    DOI: 10.6046/zrzyyg.2023008
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例
张利军1,2,3(), 贺思睿2, 张建东2(), 彭光雄2, 徐质彬1, 谢渐成1, 唐凯1, 卜建财1
1.湖南省遥感地质调查监测所, 长沙 410015
2.中南大学有色金属成矿预测与地质环境监测教育部重点实验室, 长沙 410083
3.洞庭湖区生态环境遥感监测湖南省重点实验室, 湖南省自然资源事务中心, 长沙 410004
Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province
ZHANG Lijun1,2,3(), HE Sirui2, ZHANG Jiandong2(), PENG Guangxiong2, XU Zhibin1, XIE Jiancheng1, TANG Kai1, BU Jiancai1
1. Hunan Remote Sensing Geological Survey and Monitoring Institute, Changsha 410015, China
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitor (Central South University), Ministry of Education, Changsha 410083, China
3. Hunan Key Laboratory of Remote Sensing Monitoring of Ecological Environment in Dongting Lake Area, Hunan Natural Resources Affairs Center, Changsha 410004, China
全文: PDF(39119 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

湘北常澧山地-丘陵地区地理地质环境复杂,滑坡地质灾害点多、面广、零散、频发,是造成人员伤亡和经济损失最主要的地质灾害类型。InSAR、光学遥感、LiDAR、GIS多源遥感综合技术,是目前可行性高、精度良好的滑坡地灾隐患识别和监测技术方法,能够满足宏观大范围、时效性等要求。该文基于InSAR形变速率数据、多光谱影像和DEM数据对湖南常澧地区的滑坡地灾隐患进行了识别和提取: 首先用2种决策树分类方法对多光谱图像进行了土地利用分类,以便于观察研究区的用地类别及分布情况; 然后运用DEM数据提取了高程、坡度、坡向、起伏度和曲率等5项地形地貌因子对研究区进行了滑坡危险性评价; 再基于SBAS-InSAR技术对研究区进行地表时序微形变测量; 最后在GIS系统内综合危险性评价结果和形变速率对研究区滑坡隐患进行提取和圈定,并基于CART决策树分类结果和研究区水系分布情况,对研究区内除圈定的滑坡隐患点以外的形变速率大于-0.01 m/a的区域进行了危险性推断。本次研究在植被覆盖区和裸露区识别出了数处隐蔽性高、规模小的滑坡隐患,并圈定了滑坡隐患的空间分布范围,面积0.126 km2,证明了技术方法的有效性,具有一定的实践应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张利军
贺思睿
张建东
彭光雄
徐质彬
谢渐成
唐凯
卜建财
关键词 滑坡隐患DEM数据决策树分类SBAS-InSAR湖南常澧地区    
Abstract

Due to the intricate geographical and geological environment, the mountainous-hilly area of Changli in northern Hunan Province is challenged by numerous, widespread, scattered, and frequent landslide hazards, which constitute the most significant geologic hazard that causes casualties and economic losses. The multi-source remote sensing technology integrating InSAR, optical remote sensing, LiDAR, and GIS is currently a high-feasibility and high-precision landslide hazard identification and monitoring technology, meeting the requirements for macroscale and timeliness. This study identified and extracted landslide hazards in the Changli area based on InSAR deformation rate data, multispectral images, and DEM data. First, two decision tree classification methods were employed to classify the land use types based on multispectral images, facilitating the observation of land use types and their distributions in the Changli area. Then, five topographic factors, including elevation, slope, aspect, undulation, and curvature, were extracted from DEM data to evaluate the landslide risk in the Changli area. Then, five topographic factors, such as elevation, slope, aspect, undulation and curvature, are extracted from DEM data to evaluate the landslide risk in the study area. Furthermore, the time-series surface microdeformation of the Changli area was measured based on SBAS-InSAR technology. Finally, landslide hazards were extracted and delineated in the GIS by combining risk assessment results and deformation rates. Additionally, based on the classification and regression tree (CART) results and the river system distribution in the Changli area, risk inference was conducted on zones with deformation rates exceeding -0.01 m/a except the delineated landslide hazard sites. This study identified several small-scale landslide hazards with high concealment in vegetation-covered and bare zones, delineating their spatial distribution ranges, which covered an area of 0.126 km2. The multi-source remote sensing technology proved effective, demonstrating certain practical application value.

Key wordslandslide hazard    DEM data    decision tree classification    SBAS-InSAR    Changli area in Hunan
收稿日期: 2023-01-16      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:湖南省自然资源厅科研项目“遥感新技术支持下的常澧地区地灾隐患早期识别应用示范”(2020-16);湖南省地质院科研项目“基于微波遥感SBAS技术的丘陵区斜坡形变演化阶段判别研究”(HNGSTP202212);及洞庭湖区生态环境遥感监测湖南省重点实验室开放基金“基于SBAS的洞庭盆地非均匀沉降速率时空演化特征分析”(DTH Key Lab.2022-05)
通讯作者: 张建东(1978-),博士,硕士生导师,主要从事资源遥感、地灾遥感方向研究。Email: csuzjd@sina.com
作者简介: 张利军(1987-),硕士,高级工程师,主要从事资源遥感、InSAR理论与方法研究。Email: 275328308@qq.com
引用本文:   
张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
ZHANG Lijun, HE Sirui, ZHANG Jiandong, PENG Guangxiong, XU Zhibin, XIE Jiancheng, TANG Kai, BU Jiancai. Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province. Remote Sensing for Natural Resources, 2024, 36(2): 173-187.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023008      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/173
Fig.1  研究区地理地质概况图(据陈丹婷等,2021[12])
Fig.2  研究技术路线示意图
指数 计算公式 备注
NDVI (NIR-R)/ (NIR+R) NIR为近红外波段反射率; R为红波段反射率
NDWI (Green-NIR)/(Green+NIR) Green为绿波段反射率; NIR为近红外波段反射率
NDBI (MIR-NIR)/ (MIR+NIR) MIR为中红外波段反射率; NIR为近红外波段反射率
Tab.1  归一化指数公式一览表
Fig.3  决策树分类规则图
Fig.4  决策树分类结果图
Fig.5  坡度和坡向分布图
Fig.6  坡高和地形起伏程度分布图
Fig.7  坡面曲率分布图
Fig.8  数据源分布及时空基线图
Fig.9  SBAS-InSAR技术处理流程
Fig.10  DEM数据InSAR形变率数据
Fig.11  滑坡危险区滑坡隐患点的目视解译
Fig.12  滑坡危险性评价
Fig.13  滑坡隐患空间分布图
Tab.2  常德-临澧研究区部分地灾隐患点野外验证结果表
Fig.14  CART决策树分类结果和形变率对比图
[1] 王治华. 中国滑坡遥感及新进展[J]. 国土资源遥感, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
Wang Z H. Remote sensing for landslides in China and its recent progress[J]. Remote Sensing for Land and Resources, 2007, 19(4):7-10.doi:10.6046/gtzyyg.2007.04.02.
[2] 王恭先. 滑坡学与滑坡防治技术[M]. 北京: 中国铁道出版社, 2004.
Wang G X. Landslide science and landslide prevention technology[M]. Beijing: China Railway Publishing House, 2004.
[3] 廖明生, 董杰, 李梦华, 等. 雷达遥感滑坡隐患识别与形变监测[J]. 遥感学报, 2021, 25(1):332-341.
Liao M S, Dong J, Li M H, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1):332-341.
[4] 薛东剑, 张东辉, 何政伟, 等. 多源遥感影像融合技术在地质灾害调查中的应用[J]. 遥感技术与应用, 2011, 26(5):664-669.
Xue D J, Zhang D H, He Z W, et al. Application of multi-source remote sensing image fusion in geohazard investigation[J]. Remote Sensing Technology and Application, 2011, 26(5):664-669.
[5] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
Zhao Y S. Principles and methods of remote sensing application analysis[M]. Beijing: Science Press, 2003.
[6] 花利忠, 崔胜辉, 李新虎, 等. 汶川大地震滑坡体遥感识别及生态服务价值损失评估[J]. 生态学报, 2008, 28(12):5909-5916.
Hua L Z, Cui S H, Li X H, et al. Remote sensing identification of earthquake trigged landsides and their impacts on ecosystem services:A case study of Wenchuan County[J]. Acta Ecologica Sinica, 2008, 28(12):5909-5916.
[7] Bouali E H, Oommen T, Escobar-Wolf R. Evidence of instability in previously-mapped landslides as measured using GPS,optical,and SAR data between 2007 and 2017:A case study in the Portuguese bend landslide complex,California[J]. Remote Sensing, 2019, 11(8):937.
[8] Tempa K, Peljor K, Wangdi S, et al. UAV technique to localize landslide susceptibility and mitigation proposal:A case of Rinchending Goenpa landslide in Bhutan[J]. Natural Hazards Research, 2021, 1(4):171-186.
[9] Dille A, Kervyn F, Handwerger A L, et al. When image correlation is needed:Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar and optical time series[J]. Remote Sensing of Environment, 2021, 258:112402.
[10] 李晓英. 常德市土地生态保护研究[D]. 西安: 长安大学, 2008.
Li X Y. Study on the Changde Land Ecological Protection[D]. Xi’an: Changan University, 2008.
[11] 洪明祥. 常德市科学制定"十五" 水利规划[J]. 宏观经济管理, 2001(9):41-42.
Hong M X. Changde scientifically formulates the tenth five-year water conservancy plan[J]. Macroeconomic Management, 2001(9):41-42.
[12] 陈丹婷, 彭渤, 方小红, 等. 洞庭湖“四水”入湖河床沉积物主量元素地球化学特征及意义[J]. 第四纪研究, 2021, 41(5):1267-1280.
Chen D T, Peng B, Fang X H, et al. Geochemistry of major elements in bed sediments from inlets of the four rivers to Dongting Lake,China[J]. Quaternary Sciences, 2021, 41(5):1267-1280.
[13] 李慧. 基于光学遥感和InSAR技术的滑坡早期识别与监测研究[D]. 广州: 广东工业大学, 2020.
Li H. Study on early identification and monitoring of landslide based on optical remote sensing and InSAR technology[D]. Guangzhou: Guangdong University of Technology, 2020.
[14] 梁芳, 杨维芳, 李蓉蓉. 基于SBAS-InSAR技术的矿区地表形变监测研究[J]. 地理空间信息, 2022, 20(11):44-48.
Liang F, Yang W F, Li R R. Research on surface deformation monitoring in mining area based on SBAS-InSAR technology[J]. Geospatial Information, 2022, 20(11):44-48.
[15] 万志强, 肖盛燮. 降雨型滑坡的形成及链式演化机理分析[J]. 西部交通科技, 2011(1):30-34.
Wan Z Q, Xiao S X. Analysis of formation and chained evolution mechanism of land-slide induced by rainfall[J]. Western China Communications Science & Technology, 2011(1):30-34.
[16] 龚燃. 哨兵-2A光学成像卫星发射升空[J]. 国际太空, 2015(8):36-40.
Gong R. Sentinel-2A satellite launches[J]. Space International, 2015(8):36-40.
[17] Bar-Hen A, Gey S, Poggi J M. Influence measures for CART classification trees[J]. Journal of Classification, 2015, 32(1):21-45.
[18] Martin Y E, Franklin S E. Classification of soil- and bedrock-dominated landslides in British Columbia using segmentation of satellite imagery and DEM data[J]. International Journal of Remote Sensing, 2005, 26(7):1505-1509.
[19] 李强, 张景发, 罗毅, 等. 2017年“8.8”九寨沟地震滑坡自动识别与空间分布特征[J]. 遥感学报, 2019, 23(4):785-795.
Li Q, Zhang J F, Luo Y, et al. Recognition of earthquake-induced landslide and spatial distribution patterns triggered by the Jiuzhaigou earthquake in August 8,2017[J]. Journal of Remote Sensing, 2019, 23(4):785-795.
[20] 陶海军, 杨静, 叶小军. 基于ASTER遥感数据源的Creator三维地形建模技术研究[J]. 电脑知识与技术, 2011, 7(17):4152-4154.
Tao H J, Yang J, Ye X J. Three dimensional terrain modeling method with creator software based on the ASTER remote sensing data[J]. Computer Knowledge and Technology, 2011, 7(17):4152-4154.
[21] 惠凤鸣, 田庆久, 李应成. Aster数据的DEM生产及精度评价[J]. 遥感信息, 2004, 19(1):14-18,63.
Hui F M, Tian Q J, Li Y C. Production and accuracy assessment of DEM from ASTER stereo image data[J]. Remote Sensing Information, 2004, 19(1):14-18,63.
[22] 张帆宇. 积石峡水电站坝后Ⅰ号滑坡演化过程及稳定性研究[D]. 兰州: 兰州大学, 2007.
Zhang F Y. Study on evolution process and stability of the No.1 landslide at the downstream of the Jishxia hydropower station[D]. Lanzhou: Lanzhou University, 2007.
[23] 张帆宇, 刘高, 谌文武, 等. 基于要素分析和二元统计模型的区域滑坡危险等级制图——以国道212线陇南段为例[J]. 地球科学进展, 2008, 23(10):1037-1042.
doi: 10.11867/j.issn.1001-8166.2008.10.1037
Zhang F Y, Liu G, Chen W W, et al. A study of landslide susceptibility mapping based on factor analysis and bivariate statistics-With a case study in Longnan Area of national highway 212[J]. Advances in Earth Science, 2008, 23(10):1037-1042.
[24] 李含璞. 数字高程模型格网间距对提取地形因子的影响研究[J]. 测绘与空间地理信息, 2021, 44(10):183-188.
Li H P. Research on influence of DEM resolution on extraction of terrain factors[J]. Geomatics & Spatial Information Technology, 2021, 44(10):183-188.
[25] 荀张媛. SAR与光学遥感融合在滑坡识别与监测中的应用[D]. 西安: 长安大学, 2020.
Xun Z Y. Landslide identification and monitoring with the fusion of SAR and optical remote sensing[D]. Xi’an: Changan University, 2020.
[26] Niraj K C, Gupta S K, Shukla D P. Kotrupi landslide deformation study in non-urban area using DInSAR and MTInSAR techniques on Sentinel-1 SAR data[J]. Advances in Space Research, 2022, 70(12):3878-3891.
[27] Zhang T, Xie S, Fan J, et al. Detection of active landslides in southwest China using Sentinel-1 and ALOS-2 data[J]. Procedia Computer Science, 2021, 181:1138-1145.
[28] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20.
[29] 高腾飞. InSAR技术在地面沉降监测中的应用研究[D]. 青岛: 山东科技大学, 2018.
Gao T F. Research on the application of InSAR technology in land subsidence monitoring[D]. Qingdao: Shandong University of Science and Technology, 2018.
[30] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
[31] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
[32] 王刘宇. 联合SAR影像相位和强度信息的矿区形变监测关键技术研究[J]. 测绘学报, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
Wang L Y. Study on key technologies of deformation monitoring in mining areas based on phase and intensity information of SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9):1980.
doi: 10.11947/j.AGCS.2022.20210055
[1] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[2] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[3] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[4] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[5] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[6] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[7] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[8] 何海英, 陈彩芬, 陈富龙, 唐攀攀. 张家口明长城景观廊道Sentinel-1影像SBAS形变监测示范研究[J]. 国土资源遥感, 2021, 33(1): 205-213.
[9] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[10] 国贤玉, 李坤, 王志勇, 李宏宇, 杨知. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20-27.
[11] 王瑾杰, 丁建丽, 张成, 陈文倩. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1): 29-35.
[12] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
[13] 杨宇晖, 颜梅春, 李致家, 余青, 陈贝贝. 南方丘陵地区复杂地表“同物异谱”分类处理模型[J]. 国土资源遥感, 2016, 28(2): 79-83.
[14] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
[15] 孙明, 沈渭寿, 谢敏, 李海东, 高菲. 基于光谱特征的雅鲁藏布江源区草地类型识别[J]. 国土资源遥感, 2012, 24(1): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发