Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 97-104    DOI: 10.6046/zrzyyg.2023026
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于ICM的高光谱图像自适应全色锐化算法
赵鹤婷1(), 李小军1,2,3(), 徐欣钰1, 盖钧飞1
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
An ICM-based adaptive pansharpening algorithm for hyperspectral images
ZHAO Heting1(), LI Xiaojun1,2,3(), XU Xinyu1, GAI Junfei1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(7456 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对高光谱图像全色锐化中的光谱失真和纹理细节提升不足问题,结合交叉皮层神经网络模型(intersecting cortical model, ICM),提出一种自适应高光谱图像全色锐化算法。该算法采用ICM分割,先将高光谱图像与空间分辨率较为接近的多光谱图像进行匹配融合,再将结果与高分辨率的全色图像融合,以获得同时具有全色图像的高空间分辨率和高光谱图像的光谱分辨率融合结果。同时,在锐化融合中采用灰狼优化算法(grey wolf optimizer, GWO)自适应优化ICM模型参数,生成最优非规则分割区域,为高光谱图像提供更精准全面的细节和光谱信息。采用2组资源一号02D卫星高光谱数据集进行实验验证,结果表明,提出的新的锐化融合算法在空间细节和光谱信息评价指标上均表现最优,验证了该算法有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵鹤婷
李小军
徐欣钰
盖钧飞
关键词 全色锐化交叉皮层模型高光谱图像灰狼优化算法遥感图像融合    
Abstract

Considering spectral distortion and insufficient texture details in the pansharpening of hyperspectral images, this study proposed an adaptive pansharpening algorithm for hyperspectral images based on the intersecting cortical model (ICM) for image segmentation. First, hyperspectral images were matched and fused with multispectral images with similar spatial resolution. Then, the matching and fusion results were fused with high-resolution panchromatic images, obtaining the fusion results possessing both the high spatial resolution of panchromatic images and the spectral resolution of hyperspectral images. Moreover, the grey wolf optimizer (GWO) was employed in sharpening fusion to adaptively optimize ICM parameters, generating the optimal irregular segmentation regions, thus providing more accurate and comprehensive details and spectral information for hyperspectral images. Finally, experiments were conducted on the proposed algorithm using two hyperspectral datasets from the ZY-1 02D satellite. The experimental results demonstrate that the proposed algorithm manifested the optimal performance in the evaluation indices of spatial details and spectral information, substantiating its effectiveness.

Key wordspansharpening    intersecting cortical model    hyperspectral image    grey wolf optimizer    remote sensing image fusion
收稿日期: 2023-02-13      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于脉冲耦合神经网络的高光谱遥感图像融合方法研究”(41861055);中国博士后基金项目(2019M653795);兰州交通大学优秀平台共同资助(201806)
通讯作者: 李小军(1982-),男,副教授,主要研究方向为遥感数字图像处理、神经网络。Email: xjlilzu@hotmail.com
作者简介: 赵鹤婷(1997-),女,硕士研究生,主要研究方向为遥感图像融合。Email: lzjtzht@163.com
引用本文:   
赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
ZHAO Heting, LI Xiaojun, XU Xinyu, GAI Junfei. An ICM-based adaptive pansharpening algorithm for hyperspectral images. Remote Sensing for Natural Resources, 2024, 36(2): 97-104.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023026      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/97
Fig.1  ICM神经元模型
Fig.2  本文算法流程示意图
Fig.3  ICM参数优化流程
Fig.4  刘家峡山地数据集全色锐化结果
Fig.5  兰州城市数据集全色锐化结果
方法 RMSE PSNR/dB ERGAS SSIM DD SAM/(°)
本文方法 20.009 7 30.177 6 0.451 4 0.608 8 8.602 3 2.291 6
GS 32.571 1 21.565 7 0.815 6 0.577 1 26.195 0 2.433 0
PCA 32.249 5 21.650 8 0.810 0 0.579 5 25.912 7 2.413 0
Brovey 34.867 1 20.970 2 0.854 4 0.568 3 28.263 1 2.412 2
IHS 40.792 3 18.978 6 1.054 0 0.516 4 33.807 7 2.864 0
ATWT 22.164 7 24.803 8 0.626 4 0.587 3 17.033 3 2.635 9
HPF 23.479 3 24.319 2 0.652 9 0.569 7 18.144 1 2.293 1
SFIM 22.284 9 24.761 2 0.629 2 0.572 8 17.070 9 2.295 1
BDSD-PC 29.697 2 22.400 5 1.502 4 0.484 9 22.725 8 4.139 5
Tab.1  刘家峡山地数据集全色锐化比较结果
方法 RMSE PSNR/dB ERGAS SSIM DD SAM/(°)
本文方法 49.055 6 19.191 1 1.717 0 0.599 7 35.245 5 4.780 3
GS 65.213 0 16.764 2 1.880 6 0.459 9 52.089 3 4.972 8
PCA 64.608 2 16.845 4 1.875 0 0.462 5 51.600 5 4.948 4
Brovey 57.400 8 17.895 1 1.799 8 0.496 3 45.718 0 4.934 3
IHS 72.438 5 15.347 1 2.099 2 0.426 6 57.988 8 5.358 0
ATWT 55.754 9 18.100 8 1.793 8 0.472 8 44.263 7 5.280 2
HPF 57.058 7 17.903 9 1.807 8 0.465 9 45.314 7 4.901 8
SFIM 56.417 8 18.001 4 1.801 0 0.468 3 44.791 7 4.913 1
BDSD-PC 50.277 3 18.821 6 1.765 3 0.455 9 39.718 2 5.437 6
Tab.2  兰州城市数据集全色锐化比较结果
[1] 洪科. 基于超像素分割的RGB与高光谱图像融合[J]. 电子技术与软件工程, 2020(3):74-76.
Hong K. Fusion of RGB and hyperspectral images based on super-pixel segmentation[J]. Electronic Technology & Software Engineering, 2020 (3):74-76.
[2] Ren K, Sun W, Meng X, et al. Fusing China GF-5 hyperspectral data with GF-1,GF-2 and Sentinel-2A multispectral data:Which methods should be used[J]. Remote Sensing, 2020, 12(5):882.
[3] 张立福, 赵晓阳, 孙雪剑, 等. 高分五号高光谱数据融合方法比较[J]. 遥感学报, 2022, 26(4):632-645.
Zhang L F, Zhao X Y, Sun X J, et al. Comparison of fusion methods on GF-5 hyperspectral data[J]. National Remote Sensing Bulletin, 2022, 26(4):632-645.
[4] Vivone G. Robust band-dependent spatial-detail approaches for panchromatic sharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9):6421-6433.
[5] Restaino R, Vivone G, Dalla Mura M, et al. Fusion of multispectral and panchromatic images based on morphological operators[J]. IEEE Transactions on Image Processing, 2016, 25(6):2882-2895.
doi: 10.1109/TIP.2016.2556944 pmid: 28113904
[6] Vivone G, Restaino R, Chanussot J. A bayesian procedure for full-resolution quality assessment of pansharpened products[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4820-4834.
[7] Vivone G, Restaino R, Mura M D, et al. Contrast and error-based fusion schemes for multispectral image pansharpening[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5):930-934.
[8] Vivone G. Multispectral and hyperspectral image fusion in remote sensing:A survey[J]. Information Fusion, 2023, 89:405-417.
[9] Restaino R, Vivone G, Addesso P, et al. Hyperspectral sharpening approaches using satellite multiplatform data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1):578-596.
[10] Wady S M A, Bentoutou Y, Bengermikh A, et al. A new IHS and wavelet based pansharpening algorithm for high spatial resolution satellite imagery[J]. Advances in Space Research, 2020, 66(7):1507-1521.
[11] Ghadjati M, Moussaoui A, Boukharouba A. A novel iterative PCA-based pansharpening method[J]. Remote Sensing Letters, 2019, 10(3):264-273.
doi: 10.1080/2150704X.2018.1547443
[12] Aiazzi B, Baronti S, Selva M. Improving component substitution pansharpening through multivariate regression of MS + Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3230-3239.
[13] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1):1-14.doi:10.6046/zrzyyg.2021433.
Hu J W, Wang Z P, Hu P. A review of pansharpening based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1):1-14.doi:10.6046/zrzyyg.2021433.
[14] 李树涛, 李聪妤, 康旭东. 多源遥感图像融合发展现状与未来展望[J]. 遥感学报, 2021, 25(1):148-166.
Li S T, Li C Y, Kang X D. Development status and future prospects of multi-source remote sensing image fusion[J]. National Remote Sensing Bulletin, 2021, 25(1):148-166.
[15] Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via stimulus-evoked oscillations:Experimental results from cat visual cortex and functional implications from a network model[C]// International 1989 Joint Conference on Neural Networks.IEEE, 2002:723-730.
[16] 黄陈建, 戴文战. 基于PCNN图像分割的医学图像融合算法[J]. 光电子·激光, 2022, 33(1):37-44.
Huang C J, Dai W Z. Medical image fusion algorithm based on PCNN image segmentation[J]. Journal of Optoelectronics·Laser, 2022, 33(1):37-44.
[17] 李小军, 闫浩文, 杨树文, 等. 一种多光谱遥感影像与航拍影像融合算法[J]. 遥感信息, 2019, 34(4):11-15.
Li X J, Yan H W, Yang S W, et al. A fusion algorithm of multispectral remote sensing image and aerial image[J]. Remote Sensing Information, 2019, 34(4):11-15.
[18] 张新明, 涂强, 康强, 等. 双模狩猎的灰狼优化算法在多阈值图像分割中应用[J]. 山西大学学报(自然科学版), 2016, 39(3):378-385.
Zhang X M, Tu Q, Kang Q, et al. Grey wolf optimization algorithm with double-hunting modes and its application to multi-threshold image segmentation[J]. Journal of Shanxi University (Natural Science Edition), 2016, 39(3):378-385.
[19] Wang Q, Zhang F, Li X. Optimal clustering framework for hyperspectral band selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10):5910-5922.
[20] Li S, Dian R, Fang L, et al. Fusing hyperspectral and multispectral images via coupled sparse tensor factorization[J]. IEEE Transactions on Image Processing, 2018, 27(8):4118-4130.
[21] Chen Z, Pu H Y, Wang B, et al. Fusion of hyperspectral and multispectral images:A novel framework based on generalization of pan-sharpening methods[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(8):1418-1422.
[22] Lu H, Qiao D, Li Y, et al. Fusion of China ZY-1 02D hyperspectral data and multispectral data:Which methods should be used[J]. Remote Sensing, 2021, 13(12):2354.
[1] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[2] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[3] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[4] 张国建, 刘胜震, 孙英君, 俞凯杰, 刘丽娜. 基于弱监督鲁棒性自编码的高光谱异常检测[J]. 自然资源遥感, 2023, 35(2): 167-175.
[5] 孙肖, 徐林林, 王晓阳, 田野, 王伟, 张中跃. 基于优化K-P-Means解混方法的高光谱图像矿物识别[J]. 自然资源遥感, 2022, 34(3): 43-49.
[6] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[7] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[8] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[9] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[10] 曲海成, 郭月, 王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法[J]. 国土资源遥感, 2019, 31(2): 24-31.
[11] 涂兵, 张晓飞, 张国云, 王锦萍, 周瑶. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1): 22-32.
[12] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[13] 江帆, 张晨洁. 利用NSCT和空间聚类的高光谱图像全局异常检测[J]. 国土资源遥感, 2017, 29(2): 53-59.
[14] 张媛, 张杰林, 赵学胜, 袁博. 基于峰值权重的岩心高光谱矿化蚀变信息提取[J]. 国土资源遥感, 2015, 27(2): 154-159.
[15] 张转, 马玉, 蔡伟. 基于模糊贴近度和改进Prim算法的高光谱图像波段分组排序[J]. 国土资源遥感, 2014, 26(4): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发