Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 156-168    DOI: 10.6046/zrzyyg.2024370
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于SBAS-InSAR的白鹤滩库区长时序形变监测与滑坡隐患识别
于冰1,2,3(), 张椿雨1, 王金日1, 刘国祥4, 戴可人5, 马德英1
1.西南石油大学土木工程与测绘学院,成都 610500
2.石油与化工行业油气田测绘遥感信息技术重点实验室,成都 610500
3.西南石油大学油气空间信息工程研究所,成都 610500
4.西南交通大学地球科学与环境工程学院,成都 611756
5.成都理工大学地球科学学院,成都 610059
SBAS-InSAR-based long time-series deformation monitoring and landslide hazard identification in the Baihetan reservoir area
YU Bing1,2,3(), ZHANG Chunyu1, WANG Jinri1, LIU Guoxiang4, DAI Keren5, MA Deying1
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Key Laboratory of Remote Sensing and Mapping Information Technology for Oil and Gas Fields in the Petroleum and Chemical Industry, Chengdu 610500, China
3. Institute of Petroleum and Natural Gas Spatial Information Engineering, Southwest Petroleum University, Chengdu 610500, China
4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
5. School of Earth Science, Chengdu University of Technology, Chengdu 610059, China
全文: PDF(16802 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

白鹤滩水电站库区地质灾害频发,而对白鹤滩水电站中心及下游区域监测研究较少。该文以Sentinel-1A升降轨合成孔径雷达(synthetic aperture Radar,SAR)影像为数据,采用通用大气校正在线服务(Generic Atmospheric Correction Online Service for InSAR, GACOS)辅助的小基线子集合成孔径雷达干涉(small baseline subset interferometric synthetic aperture Radar,SBAS-InSAR)方法对白鹤滩库区白石滩—野猪塘地段进行形变监测与滑坡隐患识别,利用小坡度区域升降轨形变进行交叉验证,分析研究区滑坡隐患空间分布特征及典型隐患点的运动特征,探讨地质灾害影响因子对于隐患点分布的影响。研究结果表明: 小坡度区域可用于升降轨形变交叉验证; 基于时序合成孔径雷达干涉(interferometric synthetic aperture Radar,InSAR)形变探测结果和Google Earth光学影像特征共确定出16处滑坡隐患,其中14处为缓慢发育型滑坡,2处为人类工程活动所引起的显著形变隐患; 联合升降轨数据不仅可以验证形变结果的可靠性,而且可以提高滑坡隐患识别效果。对典型隐患点的运动特征分析表明,隐患点的形变加速与季节性降雨具有一定相关性; 对研究区地灾影响因子的统计分析表明,隐患点的形成由多种因素共同作用,不同隐患的主导因素及影响度不同。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于冰
张椿雨
王金日
刘国祥
戴可人
马德英
关键词 白鹤滩水电站SBAS-InSAR形变监测隐患识别地灾影响因子    
Abstract

The reservoir area of the Baihetan hydropower station (also referred to as the Baihetan reservoir area) suffers from frequent geologic hazards. However, there is a lack of monitoring studies on the central area and lower reaches of the hydropower station. Based on the ascending and descending synthetic aperture Radar (SAR) images from the Sentinel-1A satellite, this study performed deformation monitoring and landslide hazard identification in the Baishitan-Yezhutang section of the Baihetan reservoir area using the small baseline subset-interferometric synthetic aperture Radar (SBAS-InSAR) method supported by the generic atmospheric correction online service for InSAR (GACOS). Moreover, this study conducted cross-validation of deformation data from ascending and descending SAR images for low-slope zones. It investigated the spatial distribution of landslide hazards and the movement patterns of typical hazard sites in the study area. Finally, it examined the impacts of factors influencing geologic hazards on the distribution of these hazard sites. The results indicate that the deformation data from ascending and descending SAR images for low-slope zones can be used for cross-validation. Based on the deformation detection results from time-series InSAR and the optical images from Google Earth, 16 landslide hazards were identified, including 14 slow-moving landslides and two significant deformation hazards induced by human engineering activities. Integrating the data of ascending and descending SAR images validated the reliability of deformation results and also enhanced the effectiveness of landslide hazard identification. The analysis of the movement patterns at typical hazard sites indicates a correlation between deformation acceleration and seasonal rainfall. The statistical analysis of factors influencing geologic hazards in the study area reveals that the formation of hazard sites is driven by multiple factors, with varying dominant factors and degrees of influence across different hazards.

Key wordsBaihetan hydropower station    SBAS-InSAR    deformation monitoring    hazard identification    factors influencing geologic hazards
收稿日期: 2024-11-12      出版日期: 2025-12-31
ZTFLH:  TP79  
  P237  
基金资助:国家自然科学基金面上项目“多维时序InSAR油田地表形变监测及多源复构异质储层参数建模与反演”(42471489);四川省自然科学基金面上项目“复杂山地大型水电站上下游滑坡群InSAR长时序多维形变监测、预测及评估方法研究”(2023NSFSC0265);地质灾害防治与地质环境保护国家重点实验室基金项目“川南典型峡谷库岸滑坡风险InSAR多维监测与动态评估方法”(SKLGP2023K019);天津市轨道交通导航定位及时空大数据技术重点实验室开放课题基金“面向高速铁路沿线快速形变监测的时序InSAR关键技术研究”(TKL2024B09);四川省自然科学基金项目“基于时序雷达干涉测量的冰川泥石流坡体形变及沟道演化监测”(2022NSFS1113)
作者简介: 于冰(1985-),男,博士,副教授,主要从事合成孔径雷达干涉测量与形变监测、高分辨率遥感自然和人文环境监测研究。Email: rs_insar_bingyu@163.com
引用本文:   
于冰, 张椿雨, 王金日, 刘国祥, 戴可人, 马德英. 基于SBAS-InSAR的白鹤滩库区长时序形变监测与滑坡隐患识别[J]. 自然资源遥感, 2025, 37(6): 156-168.
YU Bing, ZHANG Chunyu, WANG Jinri, LIU Guoxiang, DAI Keren, MA Deying. SBAS-InSAR-based long time-series deformation monitoring and landslide hazard identification in the Baihetan reservoir area. Remote Sensing for Natural Resources, 2025, 37(6): 156-168.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024370      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/156
Fig.1  研究区地理位置及SAR数据覆盖范围
Fig.2  研究区地质图
1-前震旦系; 2-泥盆系中统幺棚子组; 3-白垩系下统小坝组下段; 4-奥陶系下统红石崖组; 5-奥陶系中统大箐组; 6-奥陶系中统巧家组; 7-奥陶系上统; 8-二叠系下统梁山组; 9-二叠系下统栖霞-茅口组; 10-二叠系上统峨眉山玄武岩; 11-古元古界会理群通安组; 12-第四系残坡积层; 13-第四系冲洪积层; 14-志留系下统龙马溪组; 15志留系中统石门坎组; 16-志留系上统; 17-三叠系上统—侏罗系下统; 18-三叠系; 19-震旦系上统灯影组下段; 20-震旦系上统灯影组中段; 21-震旦系上统灯影组上段; 22-震旦系上统观音崖组; 23-震旦系上统列古六组; 24-寒武系下统; 25-寒武系中统西王庙组; 26-寒武系上统二道水组
卫星 轨道 波长/cm 入射角/(°) 影像获取时间 重访周期/d 空间分辨率/m 极化方式
Sentinel-1A 升轨 5.6 44.0 2018-03-10—2022-10-25 12 5×20 VV
Sentinel-1A 降轨 5.6 39.4 2018-03-22—2022-10-27 12 5×20 VV
Tab.1  Sentinel-1A数据主要参数
Fig.3  GACOS大气延迟改正前后差分干涉图对比
Fig.4  干涉对连接情况
Fig.5  研究区视线向形变速率结果
Fig.6  升降轨形变速率交叉验证
Fig.7  隐患点识别结果
区域 InSAR识别形变区编号 形变区名称 LOS向最大形
变速率/(mm·a-1)
地理位置 升/降轨 坡向 类型
区域Ⅰ XB01 麻地坪 -62.0 27°22'12″N,102°54'54″E 东南 潜在滑坡
XB02/XB07 废窝 -112.1 27°21'11″N,102°53'55″E 升、降 潜在滑坡
XB03/XB08 冯家坪村 -83.9 27°19'47″N,102°53'51″E 升、降 潜在滑坡
区域Ⅱ XB09 菜园子 -41.3 27°10'26″N,102°55'33″E 西南 潜在滑坡
XB10 大寨村 -44.9 27°13'23″N,102°55'23″E 西南 潜在滑坡
XB11 帽子田 -51.7 27°12'23″N,102°55'50″E 西南 潜在滑坡
区域Ⅲ XB12 大花地 -53.0 27°11'34″N,102°55'23″E 西北 潜在滑坡
XB13 塘拉者 -49.0 27°11'05″N,102°56'05″E 西北 潜在滑坡
XB06/XB14 付家岩脚 -86.7 27°10'26″N,102°56'45″E 升、降 东北 潜在滑坡
区域Ⅳ XB04/XB16 干田坝 -121.4 27°08'49″N,102°51'40″E 升、降 潜在滑坡
XB05 立家粱子 -90.6 27°07'47″N,102°52'17″E 潜在滑坡
区域Ⅴ XB15 子油树 -33.4 27°09'36″N,102°54'53″E 西 潜在滑坡
XB17 棉纱村 -84.2 27°08'23″N,102°55'26″E 西北 潜在滑坡
XB18 建设村 -46.5 27°07'14″N,102°55'33″E 西北 潜在滑坡
区域Ⅵ X1/X3 六城村 -92.5 27°10'59″N,102°53'59″E 升、降 地表沉降
X2/X4 半坡 -93.0 27°11'41″N,102°54'39″E 升、降 地表沉降
Tab.2  隐患点详细信息
Fig.8  废窝潜在滑坡形变特征
Fig.9  棉沙村潜在滑坡形变特征
Fig.10  六城村隐患点形变特征
Fig.11  半坡隐患点形变特征
Fig.12  隐患影响因子
Fig.13  地质隐患与影响因子之间的关系
[1] 刘晓杰. 星载雷达遥感广域滑坡早期识别与监测预测关键技术研究[D]. 西安: 长安大学, 2022.
Liu X J. Research on key technologies for early identification,monitoring and forecasting of wide-area landslides with spaceborne Radar remote sensing[D]. Xi’an: Chang’an University, 2022.
[2] 戴可人, 吴明堂, 卓冠晨, 等. 西南山区大型水电工程库岸滑坡InSAR早期识别与监测研究进展[J]. 地球科学与环境学报, 2023, 45(3):559-577.
Dai K R, Wu M T, Zhuo G C, et al. Review on InSAR early identification and monitoring of reservoir landslides for large hydropower engineering projects in southwest mountainous area of China[J]. Journal of Earth Sciences and Environment, 2023, 45(3):559-577.
[3] 康亚, 赵超英, 张勤, 等. InSAR滑坡探测技术研究——以金沙江乌东德水电站段为例[J]. 大地测量与地球动力学, 2018, 38(10):1053-1057.
Kang Y, Zhao C Y, Zhang Q, et al. Research on the InSAR technique of landslide detection:A case study of Wudongde hydropower station section,Jinshajiang[J]. Journal of Geodesy and Geodynamics, 2018, 38(10):1053-1057.
[4] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11):1651-1659.
Xu Q. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1651-1659.
[5] 许强, 蒲川豪, 赵宽耀, 等. 延安新区地面沉降时空演化特征时序InSAR监测与分析[J]. 武汉大学学报(信息科学版), 2021, 46(7):957-969.
Xu Q, Pu C H, Zhao K Y, et al. Time series InSAR monitoring and analysis of spatiotemporal evolution characteristics of land subsidence in Yan’an New District[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):957-969.
[6] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212.
doi: 10.1109/36.868878
[7] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383.
doi: 10.1109/TGRS.2002.803792
[8] Ferretti A, Fumagalli A, Novali F, et al. A new algorithm for processing interferometric data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470.
doi: 10.1109/TGRS.2011.2124465
[9] 戴可人, 沈月, 吴明堂, 等. 联合InSAR与无人机航测的白鹤滩库区蓄水前地灾隐患广域识别[J]. 测绘学报, 2022, 51(10):2069-2082.
doi: 10.11947/j.AGCS.2022.20220305
Dai K R, Shen Y, Wu M T, et al. Identification of potential landslides in Baihetan Dam area before the impoundment by combining InSAR and UAV survey[J]. Acta Geodaetica et Cartographica Si-nica, 2022, 51(10):2069-2082.
[10] 吴明堂, 崔振华, 易小宇, 等. 白鹤滩库区象鼻岭—野猪塘段地质灾害综合遥感识别[J]. 长江科学院院报, 2023, 40(4):155-163.
doi: 10.11988/ckyyb.20211219
Wu M T, Cui Z H, Yi X Y, et al. Identification of geohazards in Xiangbiling-Yezhutang section of Baihetan Reservoir area using multi-source remote sensing data[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(4):155-163.
[11] 顿佳伟, 冯文凯, 易小宇, 等. 白鹤滩库区蓄水前活动性滑坡InSAR早期识别研究——以葫芦口镇至象鼻岭段为例[J]. 工程地质学报, 2023, 31(2):479-492.
Dun J W, Feng W K, Yi X Y, et al. Early insar identification of active landslide before impoundment in Baihetan Reservoir area:A case study of Hulukou Town Xiangbiling section[J]. Journal of Engineering Geology, 2023, 31(2):479-492.
[12] Dai K R, Chen C, Shi X L, et al. Dynamic landslides susceptibility evaluation in Baihetan Dam area during extensive impoundment by integrating geological model and InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2023,116:103157.
[13] Liu Y, Yao X, Gu Z K, et al. Research on automatic recognition of active landslides using InSAR deformation under digital morphology:A case study of the Baihetan reservoir,China[J]. Remote Sensing of Environment, 2024,304:114029.
[14] Zhu Y R, Qiu H J, Liu Z J, et al. Rainfall and water level fluctuations dominated the landslide deformation at Baihetan Reservoir,China[J]. Journal of Hydrology, 2024,642:131871.
[15] 朱赛楠, 殷跃平, 王猛, 等. 金沙江结合带高位远程滑坡失稳机理及减灾对策研究——以金沙江色拉滑坡为例[J]. 岩土工程学报, 2021, 43(4):688-697.
Zhu S N, Yin Y P, Wang M, et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:Case study of Sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4):688-697.
[16] Yu C, Penna N T, Li Z H. Generation of real-time mode high-resolution water vapor fields from GPS observations[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(3):2008-2025.
doi: 10.1002/jgrd.v122.3
[17] 李丹. 基于时序InSAR技术的恩施沙子坝滑坡形变监测与区域易发性评价[D]. 武汉: 华中师范大学, 2021.
Li D. Deformation monitoring and regional susceptibility assessment of Shaziba landslide in Enshi based on time series InSAR Technology[D]. Wuhan: Central China Normal University, 2021.
[18] Hooper A, Bekaert D, Spaans K, et al. Recent advances in SAR interferometry time series analysis for measuring crustal deformation[J]. Tectonophysics, 2012,514:1-13.
[19] Xu B, Li Z W, Wang Q J, et al. A refined strategy for removing composite errors of SAR interferogram[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):143-147.
doi: 10.1109/LGRS.2013.2250903
[20] Wang Q J, Yu W Y, Xu B, et al. Assessing the use of GACOS pro-ducts for SBAS-InSAR deformation monitoring:A case in southern California[J]. Sensors, 2019, 19(18):3894.
doi: 10.3390/s19183894
[21] 刘友奉. 基于DS-InSAR的充填开采区地表沉降监测方法研究[D]. 徐州: 中国矿业大学, 2021.
Liu Y F. Study on monitoring method of surface subsidence in filling mining area based on DS-InSAR[D]. Xuzhou: China University of Mining and Technology, 2021.
[22] 李松林, 许强, 汤明高, 等. 三峡库区滑坡空间发育规律及其关键影响因子[J]. 地球科学, 2020, 45(1):341-354.
Li S L, Xu Q, Tang M G, et al. Study on spatial distribution and key influencing factors of landslides in Three Gorges Reservoir area[J]. Earth Science, 2020, 45(1):341-354.
[23] 方苗, 张金龙, 徐瑱. 基于GIS和Logistic回归模型的兰州市滑坡灾害敏感性区划研究[J]. 遥感技术与应用, 2011, 26(6):845-854.
Fang M, Zhang J L, Xu Z. Landslide susceptibility zoning study in Lanzhou City based on GIS and logistic regression model[J]. Remote Sensing Technology and Application, 2011, 26(6):845-854.
[24] Collins B D, Stock G M. Rockfall triggering by cyclic thermal stressing of exfoliation fractures[J]. Nature Geoscience, 2016, 9(5):395-400.
doi: 10.1038/NGEO2686
[25] 李媛茜, 张毅, 苏晓军, 等. 白龙江流域潜在滑坡InSAR识别与发育特征研究[J]. 遥感学报, 2021, 25(2):677-690.
Li Y X, Zhang Y, Su X J, et al. Early identification and characteristics of potential landslides in the Bailong River Basin using InSAR technique[J]. National Remote Sensing Bulletin, 2021, 25(2):677-690.
doi: 10.11834/jrs.20210094
[26] 胡俊. 基于现代测量平差的InSAR三维形变估计理论与方法[D]. 长沙: 中南大学, 2013.
Hu J. Theory and method of estimating three-dimensional displacement with InSAR based on the modern surveying adjustment[D]. Changsha: Central South University, 2013.
[27] 曹中山. 基于易发性和临界降雨阈值的滑坡危险性预警建模研究[D]. 南昌: 南昌大学, 2020.
Cao Z S. Study on landslide risk warning modeling based on sensitivity and critical rainfall threshold[D]. Nanchang: Nanchang University, 2020.
[28] Huang F M, Chen J W, Liu W P, et al. Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold[J]. Geomorphology, 2022,408:108236.
[29] 姚鑫, 邓建辉, 刘星洪, 等. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术, 2020, 52(5):16-37.
Yao X, Deng J H, Liu X H, et al. Primary recognition of active landslides and development rule analysis for pan three-river-parallel territory of Tibet Plateau[J]. Advanced Engineering Sciences, 2020, 52(5):16-37.
[30] 程海琴, 陈强, 刘国祥, 等. 短基线InSAR探测龙门山主断裂带两侧震后雨期的滑坡空间分布特征[J]. 测绘学报, 2014, 43(9):931-938.
doi: 10.13485/j.cnki.11-2089.2014.0161
Cheng H Q, Chen Q, Liu G X, et al. Post-earthquake landslides distribution along Longmenshan major fault during rainy season with short-baseline InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9):931-938.
[1] 高峰, 张弘怀, 周伟, 王星星, 孙丽影, 许文新, 吴迪. 浙江省宁波地区地质灾害隐患点遥感综合监测识别[J]. 自然资源遥感, 2025, 37(6): 263-274.
[2] 苏芸如, 石鹏卿, 周小龙, 张娟. 基于InSAR技术的典型重大地质灾害形变监测与分析[J]. 自然资源遥感, 2025, 37(6): 88-96.
[3] 玄甲斌, 李如仁, 傅文学. 双极化优化的时序InSAR形变监测研究[J]. 自然资源遥感, 2025, 37(6): 128-137.
[4] 靳婷婷, 喜文飞, 钱堂慧, 郭峻杞, 洪文玉, 丁子天, 桂富羽. 基于SBAS-InSAR技术的中老铁路沿线地表形变空间分布研究——以景洪段为例[J]. 自然资源遥感, 2025, 37(4): 232-240.
[5] 杨成生, 魏春蕊, 魏云杰, 李祖锋, 丁慧兰. 基于多源遥感影像的西藏白格滑坡失稳前后全过程形变监测研究[J]. 自然资源遥感, 2025, 37(3): 203-211.
[6] 魏小强, 杨国林, 刘涛, 邵明, 马志刚. 基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究[J]. 自然资源遥感, 2025, 37(1): 122-130.
[7] 俞文轩, 李益敏, 计培琨, 冯显杰, 向倩英. 基于升降轨SAR数据的兰坪县黄登水电站上游时间序列地表形变研究[J]. 自然资源遥感, 2024, 36(4): 282-294.
[8] 冯磊, 王轶, 李文吉, 王彦佐, 郑向向, 王珊珊, 张玲. 三维地质灾害隐患识别业务平台研发与应用[J]. 自然资源遥感, 2024, 36(4): 321-327.
[9] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[10] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[11] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[12] 金鑫田, 王世杰, 张兰军, 高星月. 基于InSAR技术门源地震地表形变监测与分析[J]. 自然资源遥感, 2024, 36(1): 26-34.
[13] 赵霞, 马新岩, 余虔, 王招冰. 高分辨率InSAR技术在北京大兴国际机场形变监测中的应用[J]. 自然资源遥感, 2024, 36(1): 49-57.
[14] 王宁, 姜德才, 郑向向, 钟昶. 基于多源异构数据斜坡地质灾害隐患易发性评价——以深圳市龙岗区为例[J]. 自然资源遥感, 2023, 35(4): 122-129.
[15] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发