Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (6): 275-285    DOI: 10.6046/zrzyyg.2024358
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于ECOSTRESS数据的天津市热岛时空特征分析
秦嘉凯1(), 朱忠礼1(), 吴青霞1, 张凯丽2
1.地表过程与水土风沙灾害风险防控全国重点实验室,北京师范大学地理科学学部,北京 100875
2.南京信息工程大学遥感与测绘工程学院,南京 210044
Spatiotemporal characteristics of the surface urban heat island effect in Tianjin City based on ECOSTRESS data
QIN Jiakai1(), ZHU Zhongli1(), WU Qingxia1, ZHANG Kaili2
1. State Key Laboratory of Earth Surface Processes and Hazards Risk Governance (ESPHR), Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
2. School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
全文: PDF(5802 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

随着城市化进程不断发展,城市局部热环境和小气候发生了不同程度的改变,导致发生地表城市热岛(surface urban heat island,SUHI)效应。该文利用ECOSTRESS数据,以天津市作为研究区,结合局地气候区(local climate zone,LCZ)探索了SUHI的日内变化特征以及各LCZ类型对于SUHI的昼夜贡献和梯度衰减差异。结果表明: ①天津市中心城区SUHI日内变化较大,于3: 00达到最小值0.14,于13: 00达到最大值3.56,昼夜SUHI均差1.59; ②在日尺度上,不同LCZ类型对SUHI的贡献存在较明显的类内间差异,总体来看,LCZ 1(紧凑型高层建筑)和LCZ 2(紧凑型中层建筑)的热差异指数(thermal difference index,TDI)为2.10和2.13,是主要的热源,LCZ A(繁密树木)和LCZ G(水体)的TDI是0.89和0.85,是主要的冷源,LCZ 7(轻质低层建筑)、LCZ A(繁密树木)和LCZ G(水体)昼夜冷热源角色发生了显著转变; ③天津市中心城区SUHI存在明显的梯度效应,SUHI强度与距市中心距离、建筑高度、建筑密度负相关,日间莫兰指数为0.70,夜间SUHI莫兰指数为0.84,夜间SUHI空间聚集效应强于日间,其梯度效应强于日间梯度效应。本研究为城市规划和可持续发展政策提供了新的理解视角,对于缓解城市热岛效应、提高城市的居住舒适性和可持续发展有借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦嘉凯
朱忠礼
吴青霞
张凯丽
关键词 局地气候区ECOSTRESS日内变化梯度效应地表城市热岛    
Abstract

With the continuous advancement of urbanization, the local thermal environments and microclimates of cities have undergone varying degrees of change, leading to the surface urban heat island (SUHI) effect. Based on the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) data and local climate zones (LCZs), this study investigated the diurnal variations of the SUHI effect in Tianjin City, the contributions of various LCZs to the SUHI effect during daytime and nighttime, and the SUHI gradient attenuation differences. The results indicate that the central urban area of Tianjin exhibited significant diurnal variations in the SUHI effect, reaching a minimum value of 0.14 at 3:00 and a maximum value of 3.56 at 13:00, with an average diurnal-nocturnal difference of 1.59. On a daily scale, the contributions of various LCZs to the SUHI effect displayed notable intra-class and inter-class differences. Generally, LCZ1 (compact high-rise buildings) and LCZ2 (compact mid-rise buildings) showed thermal difference indices (TDIs) of 2.10 and 2.13, respectively, serving as the primary heat sources. In contrast, LCZA (dense trees) and LCZG (water bodies) yielded TDIs of 0.89 and 0.85, respectively, serving as the primary cold sources. Notably, the roles of LCZ7 (lightweight low-rise buildings), LCZA, and LCZG as cold/heat sources changed significantly during daytime and nighttime. A pronounced SUHI gradient effect was observed in the central urban area of Tianjin, with the SUHI intensity negatively correlated with the distance from the urban center, building height, and building density. The Moran’s I of the SUHI effect was 0.70 during daytime and 0.84 during nighttime, indicating that the SUHI effect exhibited stronger spatial aggregation and gradient effect during nighttime. Overall, by analyzing the diurnal dynamic changes of the SUHI effect and the contributions of various LCZs to the SUHI effect, this study reduces the errors associated with previous analyses that rely solely on fixed-time images. It provides a novel insight into understanding urban planning and sustainable development policies. Moreover, this study can be referenced for alleviating the SUHI effect and improving the livability and sustainable development of cities.

Key wordslocal climate zone (LCZ)    ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)    diurnal variation    gradient effect    surface urban heat island (SUHI)
收稿日期: 2024-10-30      出版日期: 2025-12-31
ZTFLH:  TP79  
通讯作者: 朱忠礼(1972-),男,博士,副教授,主要从事遥感水文研究。Email: zhuzl@bnu.edu.cn
作者简介: 秦嘉凯(2002-),男,硕士研究生,主要从事热红外遥感研究。Email: rs_qjk@qq.com
引用本文:   
秦嘉凯, 朱忠礼, 吴青霞, 张凯丽. 基于ECOSTRESS数据的天津市热岛时空特征分析[J]. 自然资源遥感, 2025, 37(6): 275-285.
QIN Jiakai, ZHU Zhongli, WU Qingxia, ZHANG Kaili. Spatiotemporal characteristics of the surface urban heat island effect in Tianjin City based on ECOSTRESS data. Remote Sensing for Natural Resources, 2025, 37(6): 275-285.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024358      或      https://www.gtzyyg.com/CN/Y2025/V37/I6/275
Fig.1  研究区范围
北京
时刻
北京日期 ECOSTRESS
影像时刻
(UTC)
ECOSTRESS
影像日期
(UTC)
昼夜
00:54 2022年05月22日 16:54 2022年05月21日 夜间
04:11 2020年07月15日 20:11 2020年07月14日 夜间
08:00 2023年06月15日 00:00 2023年06月15日 日间
09:30 2019年09月02日 01:30 2019年09月02日 日间
10:14 2022年08月10日 02:14 2022年08月10日 日间
18:19 2023年07月19日 10:19 2023年07月19日 日间
21:43 2022年05月29日 13:43 2022年05月29日 夜间
Tab.1  ECOSTRESS数据获取时间
建成景观 描述 自然景观 描述
高密度的高层建筑(>10层),少或无绿地。 高密度树木,土地覆盖多为低矮植物。
高密度的中层建筑(3~9层),少或无绿地。 低密度林地,地表覆盖多为低矮植被。
高密度的低层建筑(1~3层),少或无绿地。 灌木和矮小树木开放排列。土地覆盖多为裸露土壤或沙子。
低密度的高层建筑(>10层),丰富的树木和植被。 草或草本植物、农作物的无特征景观,很少或没有树木。
低密度的中层建筑(3~9层),丰富的树木和植被。 岩石或铺砌覆盖物的无特色景观。很少或没有植被。
低密度的低层建筑(1~3层),丰富的树木和植被。 土壤或沙子覆盖的无特征景观。很少或没有树木或植物。
高密度单层建筑(1~2层),少树木,地表覆盖多为硬土。 大型、开放的水体区域,如海洋、湖泊、河流、水库等。
低密度的大型低层建筑(1~3层),几乎没有树木,地表覆盖多为硬化地面。
低密度的中小型建筑,丰富的植被。
中低层重工业建筑(塔、罐、烟囱),少树木,地表覆盖多为硬化地面。
Tab.2  局地气候区定义
Fig.2  研究区局地气候区分类
等级 划分标准 等级 划分标准
强冷岛 SUHI<-5 弱热岛 $1\le SUHI<3$
较强冷岛 $-5\le SUHI<-3$ 较强热岛 $3\le SUHI<5$
弱冷岛 $-3\le SUHI<-1$ 强热岛 $SUHI\ge 5$
中温区 $-1\le SUHI<1 $
Tab.3  SUHI等级划分标准
Fig.3  不同时刻热岛强度空间分布
时间 强冷岛 较强
冷岛
弱冷岛 中温区 弱热岛 较强
热岛
强热岛
0:54 0.06 0.47 16.20 44.76 35.37 3.10 0.04
4:11 0.01 0.47 21.82 45.60 27.86 4.17 0.08
8:00 0.01 2.37 13.76 32.50 38.20 10.70 2.46
9:30 0.01 2.66 14.42 28.78 30.76 16.52 6.85
10:14 0.00 0.67 16.87 26.48 22.03 14.79 19.14
18:19 0.01 0.86 13.42 32.26 26.95 20.60 5.90
21:43 0.29 3.44 14.50 34.31 28.79 17.61 1.06
Tab.4  不同时刻各等级热岛占比
Fig.4  ERA5-LAND温度变化与日内SUHI温度插值比较
Fig.5  基于LCZ的类间热岛强度贡献
Fig.6  基于LCZ的类内热岛强度贡献
时刻 I Z P
00:54 0.96 464.24 <0.01
04:11 0.66 345.88 <0.01
08:00 0.73 442.06 <0.01
09:30 0.76 583.45 <0.01
10:14 0.69 792.32 <0.01
18:19 0.64 458.76 <0.01
21:43 0.90 548.91 <0.01
Tab.5  天津市中心城区温度空间自相关指数
Fig.7  SUHI逐梯度变化
[1] MacKey C W, Lee X H, Smith R B. Remotely sensing the cooling effects of city scale efforts to reduce urban heat island[J]. Building and Environment, 2012,49:348-358.
[2] Weng Q H. Remote sensing of impervious surfaces in the urban areas:Requirements,methods,and trends[J]. Remote Sensing of Environment, 2012,117:34-49.
[3] 肖达. 北京市城市热环境的多时间尺度分析研究[D]. 西安: 长安大学, 2021.
Xiao D. A multi-timescale study of the urban thermal environment in Beijing[D]. Xi’an: Changan University, 2021.
[4] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities[J]. Science, 2008, 319(5864):756-760.
doi: 10.1126/science.1150195 pmid: 18258902
[5] Wang W W, Zhou W, Ng E Y Y, et al. Urban heat islands in Hong Kong:Statistical modeling and trend detection[J]. Natural Haza-rds, 2016, 83(2):885-907.
[6] Weng Q H, Lu D S, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004, 89(4):467-483.
doi: 10.1016/j.rse.2003.11.005
[7] Shen H F, Huang L W, Zhang L P, et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data:A 26-year case study of the city of Wuhan in China[J]. Remote Sensing of Environment, 2016,172:109-125.
[8] 黄群芳. 城市空间形态对城市热岛效应的多尺度影响研究进展[J]. 地理科学, 2021, 41(10):1832-1842.
doi: 10.13249/j.cnki.sgs.2021.10.015
Huang Q F. Effects of urban spatial morphology on urban heat island effect from multi-spatial scales perspectives[J]. Scientia Geographica Sinica, 2021, 41(10):1832-1842.
doi: 10.13249/j.cnki.sgs.2021.10.015
[9] Rizwan A M, Dennis L Y C, Liu C H. A review on the generation,determination and mitigation of Urban Heat Island[J]. Journal of Environmental Sciences, 2008, 20(1):120-128.
doi: 10.1016/s1001-0742(08)60019-4 pmid: 18572534
[10] Stewart I D, Oke T R. Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012, 93(12):1879-1900.
doi: 10.1175/BAMS-D-11-00019.1
[11] Richard Y, Emery J, Dudek J, et al. How relevant are local climate zones and urban climate zones for urban climate research? Dijon (France) as a case study[J]. Urban Climate, 2018,26:258-274.
[12] Li X M, Zhou W Q, Ouyang Z Y. Relationship between land surface temperature and spatial pattern of greenspace:What are the effects of spatial resolution?[J]. Landscape and Urban Planning, 2013,114:1-8.
[13] Collins J, Dronova I. Urban landscape change analysis using local climate zones and object-based classification in the salt lake metro region,Utah,USA[J]. Remote Sensing, 2019, 11(13):1615.
doi: 10.3390/rs11131615
[14] Migliari M, Briche E, Despax J, et al. A cross-analysis matrix comparing multi-site Local Climate Zone trends:Application to identify sustainable built morphologies improving summer daytime urban microclimate[J]. Sustainable Futures, 2024,7:100162.
[15] Žgela M, Herceg-Bulić I, Lozuk J, et al. Linking land surface temperature and local climate zones in nine Croatian cities[J]. Urban Climate, 2024,54:101842.
[16] Baqa M F, Lu L, Guo H D, et al. Investigating heat-related health risks related to local climate zones using SDGSAT-1 high-resolution thermal infrared imagery in an arid megacity[J]. International Journal of Applied Earth Observation and Geoinformation, 2025,136:104334.
[17] Bechtel B, Demuzere M, Mills G, et al. SUHI analysis using local climate zones—A comparison of 50 cities[J]. Urban Climate, 2019,28:100451.
[18] Yang X S, Yao L Y, Jin T, et al. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis,China[J]. Building and Environment, 2018,137:171-184.
[19] Weng Q H. Thermal infrared remote sensing for urban climate and environmental studies:Methods,applications,and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4):335-344.
doi: 10.1016/j.isprsjprs.2009.03.007
[20] Chang Y, Xiao J F, Li X X, et al. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites[J]. Science of the Total Environment, 2021,763:144224.
[21] Li X, Xiao J, Fisher J B, et al. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station[J]. Remote Sensing of Environment, 2021,258:112360.
[22] Xiao J F, Fisher J B, Hashimoto H, et al. Emerging satellite observations for diurnal cycling of ecosystem processes[J]. Nature Plants, 2021, 7(7):877-887.
doi: 10.1038/s41477-021-00952-8 pmid: 34211130
[23] Hulley G, Shivers S, Wetherley E, et al. New ECOSTRESS and MODIS land surface temperature data reveal fine-scale heat vulnerability in cities:A case study for Los Angeles County,California[J]. Remote Sensing, 2019, 11(18):2136.
doi: 10.3390/rs11182136
[24] 袁博. 城市三维空间形态对地表热环境的影响及热暴露风险评估[D]. 兰州: 兰州交通大学, 2022.
Yuan B. Effects of urban three-dimensional spatial morphology on land surface thermal environment and assessment of heat exposure risks[D]. Lanzhou: Lanzhou Jiaotong University, 2022.
[25] Yuan B, Zhou L, Hu F, et al. Diurnal dynamics of heat exposure in Xi’an:A perspective from local climate zone[J]. Building and Environment, 2022,222:109400.
[26] 赵欣, 赵凯旭, 黄晓军. 基于ECOSTRESS地表温度和手机信令数据的城市人口热环境暴露风险评价——以西安市为例[J]. 地理科学进展, 2022, 41(11):2061-2072.
doi: 10.18306/dlkxjz.2022.11.006
Zhao X, Zhao K X, Huang X J. Population exposure risk to urban extreme heat environment based on ECOSTRESS land surface temperature and mobile phone signaling data:A case study of Xi’an City[J]. Progress in Geography, 2022, 41(11):2061-2072.
[27] Vo T T, Hu L. Diurnal evolution of urban tree temperature at a city scale[J]. Scientific Reports, 2021, 11(1):10491.
doi: 10.1038/s41598-021-89972-0 pmid: 34006981
[28] Chang Y, Xiao J F, Li X X, et al. Exploring diurnal thermal variations in urban local climate zones with ECOSTRESS land surface temperature data[J]. Remote Sensing of Environment, 2021,263:112544.
[29] Yao X, Zeng X J, Zhu Z P, et al. Exploring the diurnal variations of the driving factors affecting block-based LST in a “Furnace city” using ECOSTRESS thermal imaging[J]. Sustainable Cities and Society, 2023,98:104841.
[30] Wang Q, Wang X N, Meng Y, et al. Exploring the impact of urban features on the spatial variation of land surface temperature within the diurnal cycle[J]. Sustainable Cities and Society, 2023,91:104432.
[31] 彭敏, 姚娜, 孙培蕾, 等. 基于ECOSTRESS的城市热环境昼夜空间特征分析[J]. 测绘通报, 2024(6):151-156,181.
doi: 10.13474/j.cnki.11-2246.2024.0626
Peng M, Yao N, Sun P L, et al. Spatial characteristics analysis of urban thermal diurnal environment based on ECOSTRESS[J]. Bulletin of Surveying and Mapping, 2024(6):151-156,181.
doi: 10.13474/j.cnki.11-2246.2024.0626
[32] Demuzere M, Kittner J, Martilli A, et al. A global map of local climate zones to support earth system modelling and urban-scale environmental science[J]. Earth System Science Data, 2022, 14(8):3835-3873.
doi: 10.5194/essd-14-3835-2022
[33] Hulley G. ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission-Level 2 Product User Guide[J/OL].USGS,2019(2019-06-18)[2024-10-23]. lpdaac.usgs.gov/documents/424/ECO3ETPTJPL_User_Guide_V1.pdf.
[34] Hulley G C, Göttsche F M, Rivera G, et al. Validation and quality assessment of the ECOSTRESS level-2 land surface temperature and emissivity product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,60:1-23.
[35] Peng J, Xie P, Liu Y X, et al. Urban thermal environment dynamics and associated landscape pattern factors:A case study in the Beijing metropolitan region[J]. Remote Sensing of Environment, 2016,173:145-155.
[36] 伍肖肖. 城市绿地对热岛效应的缓解作用及其优化策略研究——以贵阳市主城区为例[D]. 贵阳: 贵州师范大学, 2024.
Wu X X. Research on the mitigation effect of urban green space on heat island effect and its optimisation strategy- A case study of the main urban area of Guiyang city[D]. Guiyang: Guizhou Normal University, 2024.
[37] 张沁, 张守平, 杨清伟. 山地新城市化进程的热岛效应时空演变特性研究[J]. 中国农业大学学报, 2024, 29(10):290-304.
Zhang Q, Zhang S P, Yang Q W. Spatio-temporal characteristics of heat island effect during new urbanization in mountainous areas[J]. Journal of China Agricultural University, 2024, 29(10):290-304.
[38] 何苗. 基于多源遥感的北京城市高温热浪风险评估[D]. 南京: 南京信息工程大学, 2019.
He M. Assessing heat wave risk in Beijing by multi-source remote sensing[D]. Nanjing: Nanjing University of Information Science and Technology, 2019.
[39] Lu Y S, He T, Xu X L, et al. Investigation the robustness of standard classification methods for defining urban heat islands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:11386-11394.
[40] 王杉. 基于LCZ的长三角城市群热岛的时空特征及规划对策研究[D]. 杭州: 浙江大学, 2023.
Wang S. Research on the spatial and temporal characteristics and planning countermeasures of UHI in the Yangtze river delta urban agglomeration based on LCZ[D]. Hangzhou: Zhejiang University, 2023.
[41] 张策, 吕王勇, 张萍, 等. 基于Moran’s I的多变量空间自相关研究与应用[J]. 四川师范大学学报(自然科学版), 2024, 47(6):818-829.
Zhang C, Lyu W Y, Zhang P, et al. Research and application of multivariate spatial autocorrelation based on Moran’s I[J]. Journal of Sichuan Normal University (Natural Science), 2024, 47(6):818-829.
[42] Li F, Sun W W, Yang G, et al. Investigating spatiotemporal patterns of surface urban heat islands in the Hangzhou metropolitan area,China,2000—2015[J]. Remote Sensing, 2019, 11(13):1553.
doi: 10.3390/rs11131553
[43] Guo G H, Wu F C, Xie F Z, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China[J]. Journal of Environmental Sciences, 2012, 24(3):410-418.
pmid: 22655353
[44] 刘晓娟. 城市发展对生物多样性的影响研究——以中国鸟类多样性为例[D]. 上海: 华东师范大学, 2024.
Liu X J. Impacts of urban development on biodiversity:Empirical evidence from bird diversity in China[D]. Shanghai: East China Normal University, 2024.
[45] 方云皓, 顾康康, 马晴. 基于多源数据的城市通风廊道构建及效能评估研究——以合肥市主城区为例[J]. 地理科学进展, 2024, 43(8):1597-1608.
doi: 10.18306/dlkxjz.2024.08.010
Fang Y H, Gu K K, Ma Q. Construction and efficiency assessment of urban ventilation corridors based on multi-source data:A case study of the main urban area of Hefei City[J]. Progress in Geography, 2024, 43(8):1597-1608.
[46] Zhao L, Lee X H, Smith R B, et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014, 511(7508):216-219.
doi: 10.1038/nature13462
[47] Huang X, Wang Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data:A case study of Wuhan,Central China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,152:119-131.
[1] 刘昱甫, 白玉琪. 世界气象组织数据共享体系分析[J]. 自然资源遥感, 2025, 37(6): 1-9.
[2] 刘昱甫, 白玉琪. 国际耦合模式比较计划地球模拟数据全球共享体系分析[J]. 自然资源遥感, 2025, 37(6): 10-21.
[3] 张金华, 胡忠文, 张英慧, 张谦, 王敬哲, 邬国锋. 融合光学与LiDAR数据的实景三维模型山地植被制图[J]. 自然资源遥感, 2025, 37(6): 107-117.
[4] 葛利华, 王鹏, 张燕琴, 赵双林. 基于深度森林的遥感图像变化检测模型[J]. 自然资源遥感, 2025, 37(6): 118-127.
[5] 玄甲斌, 李如仁, 傅文学. 双极化优化的时序InSAR形变监测研究[J]. 自然资源遥感, 2025, 37(6): 128-137.
[6] 邓煜曦, 李佳田, 刘佳音, 罗欣, 杨涛. 结合大核选择性卷积增强模块的遥感图像匹配网络[J]. 自然资源遥感, 2025, 37(6): 138-147.
[7] 李凯旋, 刘俊伟, 王智博, 蒋文泷, 蔡汉林, 雷少刚, 杨永均. 基于Sentinel-2影像和BenchSegNet模型的露天煤矿台阶提取[J]. 自然资源遥感, 2025, 37(6): 148-155.
[8] 于冰, 张椿雨, 王金日, 刘国祥, 戴可人, 马德英. 基于SBAS-InSAR的白鹤滩库区长时序形变监测与滑坡隐患识别[J]. 自然资源遥感, 2025, 37(6): 156-168.
[9] 孙银锁, 方霄, 周东茂, 薛洪文, 苏俊武. 基于最优参数地理探测器模型的黄土高原植被动态时空序列分异及驱动力探究[J]. 自然资源遥感, 2025, 37(6): 169-181.
[10] 刘晋宇, 胡晋山, 康建荣, 朱益虎, 王胜利. 基于PSR和时序预测模型的露天煤矿区生态环境质量遥感评价[J]. 自然资源遥感, 2025, 37(6): 182-190.
[11] 张怡雯, 李凤霞, 张睿, 冯晓刚, 李萌, 胡墨清. 秦岭西安段生态系统服务时空演变与权衡/协同分析[J]. 自然资源遥感, 2025, 37(6): 191-200.
[12] 张莹, 陈运春, 郭晓飞, 吴晓聪, 陈凤林, 曾维军. 基于改进DeepLabV3plus架构的洱海流域水体精细提取[J]. 自然资源遥感, 2025, 37(6): 201-210.
[13] 王梓濛, 廖远鸿, 楼书含, 白玉琪. 森林城镇交界域划分方法对比研究——以加拿大艾伯塔省伍德布法罗市为例[J]. 自然资源遥感, 2025, 37(6): 211-218.
[14] 史晓辰, 罗晨颖, 张超, 王伟, 陈畅, 白雪川, 李少帅. 基于遥感数据的黑土区耕地生态防护评价[J]. 自然资源遥感, 2025, 37(6): 219-227.
[15] 臧明润, 廖远鸿, 陈舟, 白玉琪. 土地覆盖分类体系分析和总结[J]. 自然资源遥感, 2025, 37(6): 22-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发