Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 122-130    DOI: 10.6046/zrzyyg.2023208
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究
魏小强1,2(), 杨国林1,2,3(), 刘涛1,2,3, 邵明1,2, 马志刚1,2
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.甘肃省地理国情监测工程实验室,兰州 730070
3.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data
WEI Xiaoqiang1,2(), YANG Guolin1,2,3(), LIU Tao1,2,3, SHAO Ming1,2, MA Zhigang1,2
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
3. National -Local Joint Engineering Research Center of Technology and Application for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(5341 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 河西地区地下水利用比重不断上升导致地下水位显著下降,引起了局部地区地面沉降。研究河西地区地下水变化与地面沉降滞后性对当地水资源管理、土地利用规划和农业发展具有重要意义。利用GRACE与GLDAS数据得到研究区2010—2017年地下水变化速率,结合监测井实测数据验证了反演地下水变化数据的可靠性,利用小基线集合成孔径雷达干涉测量(small baseline subset interferometry synthetic aperture Radar,SBAS-InSAR)技术得到局部沉降区2014年10月—2017年6月的地表形变速率,并用永久散射体合成孔径雷达干涉测量(persistent scatters interferometry synthetic aperture Radar,PS-InSAR)技术对结果进行对比验证,运用快速傅里叶变换和时滞相关性分析对地下水变化与地表沉降数据解算分析。结果表明,临泽、甘州、凉州、金川沉降区地面沉降较地下水变化滞后时间分别为74~86 d,61~80 d,80~99 d,74~99 d; 相关系数分别在0.541~0.593,0.589~0.689,0.600~0.750,0.543~0.630之间。研究结果可为河西地区水资源管理、土地利用规划和农业发展提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏小强
杨国林
刘涛
邵明
马志刚
关键词 GRACESBAS-InSARPS-InSAR地下水变化地面沉降滞后性    
Abstract

The increasing dependence on groundwater in the Hexi region has led to a significant drop in the groundwater table, which has induced land subsidence in some areas. Studying the relationship between groundwater changes and land subsidence hysteresis in the Hexi region holds great significance for local water resource management, land use planning, and agricultural development. This study determined the changing rate of groundwater in the study area from 2010 to 2017 using the GRACE and GLDAS data and verified the reliability of the inverted groundwater changes by combining measured data from monitoring wells. Then, this study derived the surface deformation rate of the local subsidence areas from October 2014 to June 2017 using the small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) technique, as well as comparing and validating the results using the persistent scatterer interferometric synthetic aperture radar (PS-InSAR) technique. Finally, this study analyzed the relationship between groundwater changes and surface subsidence data using fast Fourier transform and time-delay correlation analysis. The results indicate that the time lags between land subsidence and groundwater changes were 74~86 d, 61~80 d, 80~99 d, and 74~99 d, respectively in the Linze, Ganzhou, Liangzhou, and Jinchuan subsidence areas, with respective correlation coefficients ranging from 0.541 to 0.593, from 0.589 to 0.689, from 0.600 to 0.750, and 0.543 to 0.630, respectively. The results of this study will provide a scientific basis for water resource management, land use planning, and agricultural development in the Hexi region.

Key wordsGRACE    SBAS-InSAR    PS-InSAR    groundwater change    land subsidence    hysteresis
收稿日期: 2023-07-14      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于重力和连续参考站的祁连山地区地壳非构造负荷垂直形变影响因素分解研究”(41764001);“灾害场景下应急地图需求一体化建模”(42261076);兰州交通大学优秀平台(201806);兰州交通大学天佑创新团队项目“灾害监测及应急制图”(TY202001)
通讯作者: 杨国林(1978-),男,硕士,副教授,主要从事大地测量理论及数据处理研究。Email: gl_yang@sina.com
作者简介: 魏小强(1997-),男,硕士研究生,主要从事重力卫星在水文方面的应用研究。Email: 11210895@stu.lzjtu.edu.cn
引用本文:   
魏小强, 杨国林, 刘涛, 邵明, 马志刚. 基于GRACE与InSAR数据地下水变化与地面沉降滞后性研究[J]. 自然资源遥感, 2025, 37(1): 122-130.
WEI Xiaoqiang, YANG Guolin, LIU Tao, SHAO Ming, MA Zhigang. A study on time lags between groundwater changes and land subsidence based on GRACE and InSAR data. Remote Sensing for Natural Resources, 2025, 37(1): 122-130.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023208      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/122
Fig.1  PS-InSAR数据处理流程
Fig.2  SBAS-InSAR数据处理流程
Fig.3  沉降区年平均沉降速率
Fig.4-1  年平均沉降速率分布
Fig.4-2  年平均沉降速率分布
Fig.5  PS与SBAS年平均沉降速率相关性
Fig.6  年际地下水储量变化速率
Fig.7  反演地下水与实测地下水变化
地区 地表沉降速率/(mm·a-1) 滞后时间/d
临泽沉降区 -36 ~-20 74~86
甘州沉降区 -25 ~-10 61~80
凉州沉降区 -30 ~-15 80~99
金川沉降区 -45 ~-15 74~99
Tab.1  地面沉降与地下水变化滞后时间
地区 时滞互相关系数 所占比例/%
临泽沉降区 0.541~0.593 61.90
甘州沉降区 0.589~0.689 69.23
凉州沉降区 0.600~0.750 78.42
金川沉降区 0.543~0.630 68.30
Tab.2  地面沉降与地下水变化相关系数
Fig.8  地表沉降与地下水变化关系
Fig.9  滞后时间及相关系数空间变化
[1] 于海若, 宫辉力, 陈蓓蓓, 等. 新水情下利用InSAR-GRACE卫星的新兴风险预警与城市地下空间安全展望[J]. 国土资源遥感, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.
Yu H R, Gong H L, Chen B B, et al. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sen-sing for Land and Resources, 2020, 32(4):16-22.doi:10.6046/gtzyyg.2020.04.03.
[2] Castellazzi P, Martel R, Galloway D L, et al. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations[J]. Ground Water, 2016, 54(6): 768-780.
doi: 10.1111/gwat.12453 pmid: 27576068
[3] Castellazzi P, Longuevergne L, Martel R, et al. Quantitative mapping of groundwater depletion at the water management scale using a combined GRACE/InSAR approach[J]. Remote Sensing of Environment, 2018,205: 408-418.
[4] Rodell M, Velicogna I, Famiglietti J S. Satellite-based estimates of groundwater depletion in India[J]. Nature, 2009, 460(7258): 999-1002.
[5] 虎小强, 杨树文, 闫恒, 等. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.
Hu X Q, Yang S W, Yan H, et al. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area,Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1):171-179.doi:10.6046/zrzyyg.2021415.
[6] 张庆洁, 赵争, 贾李博, 等. 黄河三角洲地面沉降现状及影响因素分析[J]. 测绘科学, 2022, 47(12):165-173.
Zhang Q J, Zhao Z, Jia L B, et al. Analysis of land subsidence status and influencing factors in Yellow River Delta[J]. Science of Surveying and Mapping, 2022, 47(12):165-173.
[7] 杨旺, 何毅, 张立峰, 等. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107
Yang W, He Y, Zhang L F, et al. InSAR monitoring of 3D surface deformation in Jinchuan mining area,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):177-188.doi:10.6046/zrzyyg.2021107.
[8] Guo J, Zhou L, Yao C, et al. Surface subsidence analysis by multi-temporal InSAR and GRACE: A case study in Beijing[J]. Sensors, 2016, 16(9): 1495.
[9] Vasco D W, Kim K H, Farr T G, et al. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin,California[J]. Scientific Reports, 2022, 12(1): 3867.
[10] Massoud E C, Liu Z, Shaban A, et al. Groundwater depletion signals in the Beqaa Plain,Lebanon:Evidence from GRACE and Sentinel-1 data[J]. Remote Sensing, 2021, 13(5): 915.
[11] 费太政, 常晓涛, 朱广彬, 等. 利用GRACE与Sentinel-1反演地下水变化与地表沉降研究[J]. 测绘科学, 2023, 48(1):140-147.
Fei T Z, Chang X T, Zhu G B, et al. Study on inversion of ground-water change and surface subsidence using GRACE and Sentinel-1[J]. Science of Surveying and Mapping, 2023, 48(1):140-147.
[12] 李红英, 李岩瑛, 王云鹏, 等. 河西走廊西部沙尘暴时空差异及其动力分析[J]. 干旱区资源与环境, 2022, 36(10):104-112.
Li H Y, Li Y Y, Wang Y P, et al. Temporal and spatial differences and dynamic analysis of sandstorms in the west of Hexi Corridor[J]. Journal of Arid Land Resources and Environment, 2022, 36(10):104-112.
[13] 李平平. 甘肃省地下水超采区地面沉降控制区判定方法和结果探讨[J]. 中国农村水利水电, 2019(6):74-77.
Li P P. Determination method and discussion of ground subsidence control area of groundwater overmining area in Gansu Province[J]. China Rural Water and Hydropower, 2019(6):74-77.
[14] Zheng M, Deng K, Fan H, et al. Monitoring and analysis of surface deformation in mining area based on InSAR and GRACE[J]. Remote Sensing, 2018, 10(9):1392.
[15] Wang Q, Zheng W, Yin W, et al. Improving the resolution of GRACE/InSAR groundwater storage estimations using a new subsidence feature weighted combination scheme[J]. Water, 2023, 15(6):1017.
[16] Agarwal V, Kumar A, Gomes R L, et al. Monitoring of ground movement and groundwater changes in London using InSAR and GRACE[J]. Applied Sciences, 2020, 10(23):8599.
[17] Khorrami M, Shirzaei M, Ghobadi-Far K, et al. Groundwater vo-lume loss in Mexico City constrained by InSAR and GRACE observations and mechanical models[J]. Geophysical Research Letters, 2023, 50(5): e2022GL101962.
[18] Liu Z, Liu P W, Massoud E, et al. Monitoring groundwater change in California’s central valley using Sentinel-1 and GRACE observations[J]. Geosciences, 2019, 9(10):436.
[19] Ferretti A, Prati C, Rocca F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212.
[20] Berardino P, Fornaro G, Lanari R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[21] 杨国林, 孙学先, 胡栋, 等. 利用GRACE数据研究柴达木盆地区域水储量时空变化及干旱特征[J]. 导航定位学报, 2023, 11(1):107-112.
Yang G L, Sun X X, Hu D, et al. Application of GRACE data in analysis on temporal and spatial changes of water reserves and drought characteristics of Qaidam Basin[J]. Journal of Navigation and Positioning, 2023, 11(1):107-112.
[22] 韦振锋, 任志远, 张翀. 气候因子与植被的时滞相关分析——以广西为例[J]. 生态环境学报, 2013, 22(11):1757-1762.
Wei Z F, Ren Z Y, Zhang C. Analysis on the time-lag correlation between vegetation and climatic factors:Take Guangxi as an example[J]. Ecology and Environmental Sciences, 2013, 22(11):1757-1762.
[23] Hussain M A, Chen Z, Zheng Y, et al. PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City,Pakistan[J]. Remote Sensing, 2022, 14(16):3950.
[24] Béjar-Pizarro M, Ezquerro P, Herrera G, et al. Mapping groundwater level and aquifer storage variations from InSAR measurements in the Madrid aquifer,Central Spain[J]. Journal of Hydrology, 2017,547:678-689.
[25] 范军, 左小清, 李涛, 等. PS-InSAR和SBAS-InSAR技术对昆明主城区地面沉降监测的对比分析[J]. 测绘工程, 2018, 27(6):50-58.
Fan J, Zuo X Q, Li T, et al. Analysis and comparison of PS-InSAR and SBAS-InSAR for ground subsidence monitoring in the main city of Kunming[J]. Engineering of Surveying and Mapping, 2018, 27(6):50-58.
[1] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[2] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[3] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[4] 明小勇, 田义超, 张强, 陶进, 张亚丽, 林俊良. 基于Sentinel-1A钦防地区地面沉降监测与分析[J]. 自然资源遥感, 2024, 36(1): 35-48.
[5] 赵华伟, 周林, 谭明伦, 汤明高, 童庆刚, 秦佳俊, 彭宇辉. 基于光学遥感和SBAS-InSAR的川渝输电网滑坡隐患早期识别[J]. 自然资源遥感, 2023, 35(4): 264-272.
[6] 高晨, 马栋, 屈曼, 钱建国, 尹海权, 侯晓真. 基于PS-InSAR的怀来地震台钻孔体应变异常机理研究[J]. 自然资源遥感, 2023, 35(3): 153-159.
[7] 于海若, 宫辉力, 陈蓓蓓, 周超凡. 天津市南部平原地面沉降区新兴风险评估[J]. 自然资源遥感, 2023, 35(2): 182-192.
[8] 潘建平, 付占宝, 邓福江, 蔡卓言, 赵瑞淇, 崔伟. 时序InSAR解析消落带区域岸坡地表形变及其水要素影响[J]. 自然资源遥感, 2023, 35(2): 212-219.
[9] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[10] 于文, 宫辉力, 陈蓓蓓, 周超凡. 北京东部平原区地面沉降时空演化特征及预测[J]. 自然资源遥感, 2022, 34(4): 183-193.
[11] 林雪敏, 李伟峰, 王红, 明冬萍, 韩立建. 我国东部沿海三大城市群地下水储量变化与驱动因素分析[J]. 自然资源遥感, 2022, 34(4): 262-271.
[12] 罗雪玮, 向喜琼, 吕亚东. 龙里某塌陷时序InSAR变形监测的PS修正[J]. 自然资源遥感, 2022, 34(3): 82-87.
[13] 徐子兴, 季民, 张过, 陈振炜. 基于SBAS-InSAR技术和Logistic模型的矿区沉降动态预测方法[J]. 自然资源遥感, 2022, 34(2): 20-29.
[14] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[15] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发