Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2007, Vol. 19 Issue (4) : 47-50     DOI: 10.6046/gtzyyg.2007.04.10
Technology and Methodology |
GEOMETRIC CORRECTION METHODS OF SPOT5 1A DATA BASED
ON GPS-MEASURED GROUND CONTROL POINTS
 CHEN Hua, AN Na, YANG Qing-Hua
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(473 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Using the high resolution ground control points measured by satellite-based DGPS (Differential Global

Positioning System), this paper compared two geometric correction methods for SPOT5 data and analyzed the causes

of correction errors. The results show that the accuracy of the orthorectification model method is better than

that of the polynomial method. The errors of the polynomial method in Y axis are bigger than those in X axis, but

the error difference in Y axis and in X axis is not obvious for the orthorectification model method. The pixel

distortion caused by the satellite observation angle is the main cause for the bigger errors of the polynomial

method.

Keywords Remote senisng information      Vegetation      Biogeochemistry      Gold prospect areas     
: 

TP75 

 
Issue Date: 23 July 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ma Yueliang
Xu Ruisong
Cite this article:   
Ma Yueliang,Xu Ruisong. GEOMETRIC CORRECTION METHODS OF SPOT5 1A DATA BASED
ON GPS-MEASURED GROUND CONTROL POINTS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 47-50.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2007.04.10     OR     https://www.gtzyyg.com/EN/Y2007/V19/I4/47
[1] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[2] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[3] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[4] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[5] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[6] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[7] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[8] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[9] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[10] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[11] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[12] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[13] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[14] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
[15] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech