Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 46-50     DOI: 10.6046/gtzyyg.2010.04.10
Technology and Methodology |

A Sensitivity Analysis and Accuracy Assessment of Different Water Extraction Index Models Based on ALOS AVNIR-2 Data
XIONG Jin-guo 1,2, WANG Shi-xin 1, ZHOU Yi 1
1.Institute of Remote Sensing Application, Chinese Academy of Sciences, Beijing 100101, China; 2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(817 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this study, spectral characteristics of water bodies and other objects in ALOS AVNIR-2 imagery in areas near Huizhou of Guangdong Province were analyzed. The impact of the threshold on the sensitivity of extracting water and the maximum precision of the four different water index models were studied. It is found that the water area in the image can be extracted well using these index models. The result shows that the application effects decrease in order of NDWI,NIR,NDVI and RVI. If the proper threshold is chosen,the overall accuracy can reach the highest and the value is nearly 98 % by using NDWI,which, moreover, is not sensitive to the threshold.

Keywords Desktop virtual reality      Characteristic      Key technique      Application     
: 

 

 
  TP 79

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Nan
YU Gao-yu
Cite this article:   
JIANG Nan,YU Gao-yu.
A Sensitivity Analysis and Accuracy Assessment of Different Water Extraction Index Models Based on ALOS AVNIR-2 Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 46-50.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.10     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/46

[1]高国龙. 日本先进陆地观测卫星(ALOS)简介[J]. 红外,2004(6):43-46.

 [2]何宇华,谢俊奇,刘顺喜. ALOS 卫星遥感数据影像特征分析及应用精度评价[J]. 地理与地理信息科学,2008, 24(2):23-26.

 [3]杜云艳,周成虎. 水体的遥感信息自动提取方法[J]. 遥感学报,1998, 2(4):364-369.

 [4]吴赛,张秋文. 基于MODIS遥感数据的水体提取方法及模型研究[J]. 计算机与数字工程,2005, 33(7):1-4.

 [5]丁莉东,吴昊. MODIS图像湖泊水体信息的快速识别与制图[J]. 海洋测绘,2006, 26(6):31-34.

 [6]王随霞,张行南. 基于MODIS数据的黄河水体提取方法研究[J]. 人民黄河,2007, 29(3):27-28.

 [7]王志辉,易善桢. 不同方法在水体遥感提取中的应用实现[J]. 红外,2007, 28(4):1-4.

 [8]陈华芳,王金亮,陈忠,等. 山地高原地区TM影像水体信息提取方法比较[J]. 遥感技术与应用,2004, 19(6):479-484.

 [9]李科,王毅勇. 改进TM图像水体自动提取模型的研究[J]. 水资源与水工程学报,2007, 18(6):20-22.

[10]钟春棋,曾从威. TM影像湿地水体信息自动提取方法研究[J]. 水资源研究,2007, 28(4):1-3.

[11]郁金康,黄永胜,冯学智,等. SPOT卫星影像的水体提取方法及分类研究[J]. 遥感学报,2001,5(3):214-219.

[12]杨存建,魏一鸣,陈德清. 基于星载雷达的洪水灾害淹没范围获取方法探讨[J]. 自然灾害学报,1998,7(3):45-50.

[13]赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社,2001:413-416.

[1] WU Jiang, LIU Chun, YING Shen, YU Ting. Spatial delineation methods of urban areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 89-97.
[2] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[3] SUN Ang, YANG Qinghua, LIU Zhi, CHEN Hua, JIANG Xiao, JIANG Shoumin, BIAN Yu, TIAN Li. Transportation in the Siliguri Corridor, West Bengal, India: distribution characteristics, trafficability, and geological environment[J]. Remote Sensing for Natural Resources, 2021, 33(3): 138-147.
[4] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[5] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[6] LI Genjun, YANG Xuesong, ZHANG Xing, LI Xiaomin, LI Delin, DU Cheng. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land & Resources, 2021, 33(2): 134-140.
[7] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[8] CHEN Shuai, ZHAO Wenyu, LIAO Zhongping. Remote sensing identification of black-odor water bodies: A review[J]. Remote Sensing for Land & Resources, 2021, 33(1): 20-29.
[9] ZHENG Bohong, WANG Zhiyuan, WANG Hua. A study of the evolution characteristics of built-up areas in Chang-Zhu-Tan urban agglomeration based on DMSP/OLS data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 172-181.
[10] PENG Xiaowei, ZHANG Aijun, WANG Nan, ZHAO Li. Application of hyperspectral imaging technology in crop seeds[J]. Remote Sensing for Land & Resources, 2020, 32(4): 23-32.
[11] Lihua FU, Ce ZHANG. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 98-105.
[12] Weijie JIA, Zhihua WANG. Landslide activity characteristics and stability analysis based on high-resolution remote sensing image: A case study of Dongmiaojia landslide[J]. Remote Sensing for Land & Resources, 2019, 31(4): 174-181.
[13] Qin ZHENG, Jun PAN, Lijun JIANG, Lixin XING, Yue JI, Yifan YU, Pengju WANG, Weijing ZHONG. A study of high temperature targets identification method based on spectral index[J]. Remote Sensing for Land & Resources, 2019, 31(3): 51-58.
[14] Xiaolu LIAO, Jia LIU, Xingxia ZHOU. Feature extraction and classification of hyperspectral image with ground-sky synchronization test[J]. Remote Sensing for Land & Resources, 2019, 31(3): 65-71.
[15] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech