Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 20-29     DOI: 10.6046/gtzyyg.2020104
|
Remote sensing identification of black-odor water bodies: A review
CHEN Shuai1(), ZHAO Wenyu2,3(), LIAO Zhongping1
1. School of Traffic & Transportation Engineering, Changsha university of Science & Technology, Changsha 410114, China
2. School of Hydraulic Engineering, Changsha University of Science & Technology, Key Laboratory of Dongting Lake Aquatic Eco- Environmental Control and Restoration of Hunan Province, Changsha 410114, China
3. School of Chemistry and Food Engineering, Changsha University of Science & Technology, Aquatic Resources Food Processing Engineering Technology Research Centre of Hunan, Changsha 410114, China
Download: PDF(1375 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The equality of ecological environment has been severely affected by black-odor water bodies, and hence strengthening the treatment of black-odor water bodies is an important task for aquatic environment management. Macro-monitoring of black-odor water bodies is the prerequisite for governance, and remote sensing technology has huge advantages in the field of macro-monitoring. There have been very insufficient studies on black and odorous water bodies. This paper systematically summarizes the current status of identification and recognition of black-odor water bodies, mainly analyzes the optical characteristics of black-odor water bodies from the three identification characteristics of reflection spectrum, watercolor, and inherent optical quantity, summarizes the recognition algorithms and the problems of these algorithms, which include the low versatility of the algorithm, the inaccurate reflectance caused by the problem of atmospheric correction features, and the overlapping features of different types of water recognition features. The future development trends are predicted: ① mining recognition characteristics; ② performing classification of reflection spectrum; ③ applying of machine learning algorithms.

Keywords black-odor water bodies      optical characteristics      remote sensing      recognition algorithms     
ZTFLH:  TP79  
Corresponding Authors: ZHAO Wenyu     E-mail: csincs@stu.csust.edu.cn;wenyuzh@csust.edu.cn
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai CHEN
Wenyu ZHAO
Zhongping LIAO
Cite this article:   
Shuai CHEN,Wenyu ZHAO,Zhongping LIAO. Remote sensing identification of black-odor water bodies: A review[J]. Remote Sensing for Land & Resources, 2021, 33(1): 20-29.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020104     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/20
Fig.1  Measure reflectance of normal water body and black-odor water body
Fig.2  Equivalent reflectance of normal water body and black-odor water body
Fig.3  Image reflectance of normal water body and black-odor water body
反射率类型 模型 阈值(n) 正确率/% 实验地点 文献来源
实测 345(2Rrs(555)-Rrs(485)-Rrs(660))sum(Rrs(485):Rrs(830))n 0.80 77.42 北京、杭州等 [15]
等效 0Greenn 0.019 50 南京 [37]
等效 0Green-Bluen 0.0036 75 南京 [37]
等效 n1Green+RedGreen-Redn2 n1=0.06 100 南京 [37]
n2=0.115
等效 Green-BlueGreen-RedΔλ1Δλ2n 0.005 62.5 南京 [42]
等效 Green-RedBlue+Green+Redn 0.065 100 沈阳 [39]
影像 NIR+Red-Bluen 0.85 92 北京 [16]
影像 NIR+Red-Greenn 0.87 85 北京 [16]
影像 NIR+Red-BlueNIR+Red+Bluen 0.4 北京 [16]
影像 NIR+Red-GreenBlue+Green+Greenn 0.45 北京 [16]
影像 n1(Green-Blue)/Δλ1(Red-Green)/Δλ2n2 n1=0 92.86 太原 [41]
n2=1
Tab.1  Threshold method based on reflection spectrum
[1] 国家住房和城乡建设部. 城市黑臭水体整治工作指南[EB/OL].[2015-08-28]. http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf.
url: http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf
[1] Ministry of Housing and Urban-Rural Development of China. Guideline for urban black and odorous water treatment[EB/OL]. [2015-08-28]. http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf .
url: http://www.mohurd.gov.cn/wjfb/201509/W020150911050936.pdf
[2] 应太林, 张国莹, 吴芯芯. 苏州河水体黑臭机理及底质再悬浮对水体的影响[J]. 上海环境科学, 1997(1):23-26.
[2] Ying T L, Zhang G Y, Wu X X. The mechanism of blackening and stink and effects of resuspended sediments on Suzhou creek water quality[J]. Shanghai Environmental Sciences, 1997(1):23-28.
[3] Cheng X, Peterkin E, Burlingame G A. A study on volatile organic sulfide causes of odors at Philadelphia’s northeast water pollution control plant[J]. Water Research, 2005,39(16):3781-3790.
[4] Deval I, Delaune R D. Emission of reduced malodorous sulfur gases from wastewater treatment plants[J]. Water Environment Research, 1999,71(2):203-208.
[5] 于玉彬, 黄勇. 城市河流黑臭原因及机理的研究进展[J]. 环境科技, 2010,23(s2):111-114.
[5] Yu Y B, Huang Y. Review of reason and mechanism of black and stink in urban rivers[J]. Environmental Science and Technology, 2010,23(s2):111-114.
[6] 王旭, 王永刚, 孙长虹, 等. 城市黑臭水体形成机理与评价方法研究进展[J]. 应用生态学报, 2016,27(4):1331-1340.
pmid: 29732792
[6] Wang X, Wang Y G, Sun C H, et al. Formation mechanism and assessment method for urban black and odorous water body:A review[J]. Chinese Journal of Applied Ecology, 2016,27(4):1331-1340.
doi: 10.13287/j.1001-9332.201604.014 pmid: 29732792 url: https://www.ncbi.nlm.nih.gov/pubmed/29732792
[7] 张晓. 中国水污染趋势与治理制度[J]. 中国软科学, 2014(10):11-24.
[7] Zhang X. Trend of and the governance system for water pollution in china[J]. China Soft Science, 2014(10):11-24.
[8] 国务院. 水污染防治行动计划[EB/OL].(2015-04-16). http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm.
url: http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm
[8] State Council of China. Action plan for prevention and control of water pollution.[EB/OL].(2015-04-16). http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm.
url: http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm
[9] 程江, 吴阿娜, 车越, 等. 平原河网地区水体黑臭预测评价关键指标研究[J]. 中国给水排水, 2006(9):18-22.
[9] Cheng J, Wu A N, Che Y, et al. Study on key indicators for judging black and odorous water in area of plain river system[J]. China Water & Waste Water, 2006(9):18-22.
[10] 郝晓明, 胡湛波, 刘成, 等. 南宁市竹排冲河道水体黑臭评价模型建立研究[J]. 华东师范大学学报(自然科学版), 2011(1):163-171.
[10] Hao X M, Hu Z B, Liu C, et al. Development of a blcak-odour prediction model for Nanning zhupai creek[J]. Journal of East China Normal University (Natural Science), 2011(1):163-171.
[11] 魏文龙, 荆红卫, 徐谦, 等. 北京市城市河道水体发黑分级评价方法[J]. 环境化学, 2016,35(7):1532-1539.
[11] Wei W L, Jing H W, Xu Q, et al. Grading assessment methods of urban creek’s blackening in Beijing[J]. Environmental Chenmistry, 2016,35(7):1532-1539.
[12] 魏文龙, 荆红卫, 张大伟, 等. 北京市城市河道水体发臭分级评价方法[J]. 环境化学, 2017,36(2):439-447.
[12] Wei W L, Jing H W, Zhang D W, et al. Grading assessment methods of urban creek’s malodor in Beijing[J]. Environmental Chenmistry, 2017,36(2):439-447.
[13] 周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019,21(11):1768-1778.
[13] Zhou Y, Dong J W. Review on monitoring open surface water body using remote sensing[J]. Journal of Geo-Information Science, 2019,21(11):1768-1778.
[14] 叶虎平. 二类水体吸收系数精确校正及其遥感反演研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[14] Ye H P. A study on the accurate correction of case Ⅱ water absorption coefficient and its remote sensing inversion[D]. Beijing:University of Chinese Academy of Sciences(Cartography and Geographical Information System Institute of Remote Sensing and Digital Earth), 2017.
[15] 曹红业. 中国典型城市黑臭水体光学特性分析及遥感识别模型研究[D]. 成都:西南交通大学, 2017.
[15] Cao H Y. Study on analysis of optical properties and remote sensing identifiable models of black and malodorous water in typical cities in China[D]. Chengdu:Southwest Jiaotong University, 2017.
[16] 纪刚. 基于遥感的黑臭水体识别方法研究及应用[D]. 兰州:兰州交通大学, 2017.
[16] Ji G. Research and application on black and odorous water body by remote sensing[D]. Lanzhou:Lanzhou Jiaotong University, 2017.
[17] Zarco-Tejada P J, Pushnik J C, Dobrowski S, et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment, 2003,84(2):283-294.
[18] Hoge F E, Vodacek A, Blough N V. Inherent optical properties of the ocean:Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements[J]. Limnology and Oceanography, 1993,38(7):1394-1402.
[19] Feyisa G L, Meilby H, Fensholt R, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014(140):23-35.
[20] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[21] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
[22] 曹凯, 江南, 吕恒, 等. 面向对象的SPOT 5影像城区水体信息提取研究[J]. 国土资源遥感, 2007,( 2):27-30.doi: 10.6046/gtzyyg.2007.02.07.
[22] Cao K, Jiang N, Lyu H, et al. The extraction of water information in urban areas based on SPOT5 mage using object-oriented method[J]. Remote Sensing for Land and Resources, 2007,( 2):27-30.doi: 10.6046/gtzyyg.2007.02.07.
[23] Dugan J, Piotrowski C, Williams J. Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion[J]. Journal of Geophysical Research:Oceans, 2001,106(C8):16903-15.
[24] 陈安娜. 适用于复杂环境的水深光学遥感新模型研究[D]. 青岛:自然资源部第一海洋研究所, 2019.
[24] Chen A N. Research on novel model of optical remote sensing bathymetry for complex situations[D]. Qingdao:The First Institute of Oceanography, 2019.
[25] Harvey E T, Kratzer S, Philipson P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters[J]. Remote Sensing of Environment, 2015(158):417-430.
[26] Priyaa S S, Ga R. Retrieval of water quality parameters of South Andaman coral islands using remotely operated underwater vehicle[J]. Water Science, 2019,33(1):105-117.
[27] Zhang Y, Pulliainen J T, Koponen S S, et al. Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(3):622-629.
[28] 谢欢. 基于遥感的水质监测与时空分析[D]. 上海:同济大学, 2006.
[28] Xie H. Remote sensing based water monitoring and spatial-temporal analysis[D]. Shanghai:Tongji University, 2006.
[29] Duan H, Ma R, Loiselle S A, et al. Optical characterization of black water blooms in eutrophic waters[J]. Science of the Total Enviroment, 2014(482-483):174-183.
[30] Hu C. The 2002 ocean color anomaly in the Florida Bight:A cause of local coral reef decline?[J]. Geophysical Research Letters, 2003,30(3):51-54.
[31] Kutser T, Paavel B, Verpoorter C, et al. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters[J]. Remote Sensing, 2016,8(6):497-511.
[32] Zhao J, Hu C, Lapointe B, et al. Satellite-observed black water events off southwest Florida:Implications for coral reef health in the Florida keys national marine sanctuary[J]. Remote Sensing, 2013,5(1):415-431.
[33] 李旭文, 牛志春, 姜晟, 等. 环境卫星CCD影像在太湖湖泛暗色水团监测中的应用[J]. 环境监控与预警, 2012,4(3):1-9.
[33] Li X W, Niu Z C, Jiang S, et al. Remote sensing monitoring of black color water blooms in Lake Taihu based on HT Satellite CCD data[J]. Environmental Monitoring and Forewarning, 2012,4(3):1-9.
[34] 李旭文, 牛志春, 姜晟, 等. 太湖湖泛现象的卫星遥感监测[J]. 环境监测管理与技术, 2012,24(2):12-17.
[34] Li X W, Niu Z C, Jiang S, et al. Satellite remote sensing monitoring of black color water blooms in Lake Taihu[J]. The Administrtion and Technique of Environmental Monitoring, 2012,24(2):12-17.
[35] 张思敏. 太湖黑水团水体光学特性及遥感监测研究[D]. 南京:南京师范大学, 2017.
[35] Zhang S M. The study on optical properties and remote monitor of black water blooms[D]. Nanjing:Nanjing Normal University, 2017.
[36] 吴世红. 城市黑臭水体遥感监测关键技术研究进展[J]. 环境工程学报, 2019,13(6):1261-1271.
[36] Wu S H. Research progress of remote sensing monitoring key technologies for urban black and odorous water bodies[J]. Chinese Journal of Environmental Engineering, 2019,13(6):1261-1271.
[37] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018,39(1):57-67.
[37] Wen S, Wang Q, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Enviroment Science, 2018,39(1):57-67.
[38] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,( 1):37-44.
[38] Tian J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ι:Above water method[J]. Journal of Remote Sensing, 2004,( 1):37-44
[39] 姚月, 申茜, 朱利, 等. 高分二号的沈阳市黑臭水体遥感识别[J]. 遥感学报, 2019,23(2):230-242.
[39] Yao Y, Shen Q, Zhu L, et al. Remote sensing identification of urban black-odor water bodies in Shenyang City based on GF-2 image[J]. Journal of Remote Sensing, 2019,23(2):230-242.
[40] 占玲骅. 基于光学特性的城市黑臭水体识别模型研究[D]. 上海:华东师范大学, 2019.
[40] Zhan L H. Study on recognition models of urban balck and odorous water bodies based on optical characteristcs[D]. Shanghai:East China Normal University, 2019.
[41] 李佳琦, 李家国, 朱利, 等. 太原市黑臭水体遥感识别与地面验证[J]. 遥感学报, 2019,23(4):773-784.
[41] Li J Q, Li J G, Zhu L, et al. Remote sensing identification and validation of urban black and odorous water in Taiyuan City[J]. Journal of Remote Sensing, 2019,23(4):773-784.
[42] 温爽. 基于GF-2影像的城市黑臭水体遥感识别[D]. 南京:南京师范大学, 2018.
[42] Wen S. Remote sensing recognition of urban black and odorous water bodies based on GF-2 images:A case study in Nanjing[D]. Nanjing:Nanjing Normal University, 2018.
[43] 李佐琛, 段洪涛, 申秋实, 等. 藻源性湖泛发生过程CDOM变化对水色的影响[J]. 湖泊科学, 2015,27(4):616-622.
[43] Li Z C, Duan H T, Shen Q S, et al. The changes of water color induced by chromophoric dissolved organic matter(CDOM) during the formation of black blooms[J]. Journal of Lake Sciences, 2015,27(4):616-622.
[44] 李佐琛, 段洪涛, 张玉超, 等. 藻源型湖泛发生过程水色变化规律[J]. 中国环境科学, 2015,35(2):524-532.
[44] Li Z C, Duan H T, Zheng Y C, et al. Variations in optical properties and water color during formation of black bloom waters:A laboratory experiment[J]. China Environment Science, 2015,35(2):524-532.
[45] 董舒. 基于色度法的点源污染远程图像水质分析监测方法研究[D]. 北京:北方工业大学, 2016.
[45] Dong S. Research on remote image water quality analysis and monitoring method of point source pollution based on chromatictiy method[D]. Beijing:North China University of Technology, 2016.
[46] 卢燕南. 基于PlanetScope影像的城市黑臭水体遥感识别与分类研究[D]南宁:广西大学, 2019.
[46] Lu Y N. Remote sensing recognition and classfication of urban black and odorous water body based on PlanetScope images[D]. Nanning:Guangxi University, 2019.
[47] Morel A. Optical properties of pure water and pure sea water[J]. Optical Aspects of Oceanography, 1974,1(1):1-24
[48] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure waterII:Integrating cavity measurements[J]. Applied Optics, 1997,36(33):8710-8723.
doi: 10.1364/ao.36.008710 pmid: 18264420 url: https://www.ncbi.nlm.nih.gov/pubmed/18264420
[49] 张红, 黄家柱, 李云梅, 等. 滇池水体光学物质的吸收特性研究[J]. 环境科学, 2011,32(2):452-463.
[49] Zhang H, Huang J Z, Li Y M, et al. Spectral absorption coefficients of optically active substances in Lake Dianchi[J]. Environmental Science, 2011,32(2):452-463.
[50] 石亮亮. 基于遥感与实测资料的水体固有光学量及CDOM反演研究[D]. 杭州:浙江大学, 2019.
[50] Shi L L. Retrieval of inherent optical properties and chromophoric dissolved organic matter based on remote sensing and in situ observations[D]. Hangzhou:Zhejiang University 2019.
[51] 刘忠华, 李云梅, 吕恒, 等. 太湖春季水体固有光学特性及其对遥感反射率变化的影响[J]. 生态学报, 2012,32(2):438-447.
[51] Liu Z H, Li Y M, Lyu H, et al. Analysis of inherent optical properties of Lake Taihu in spring and its influrnce on the change of remote sensing reflectance[J]. Acta Ecologica Sinica, 2012,32(2):438-447.
[52] 黄昌春, 李云梅, 孙德勇, 等. 太湖水体散射光谱特性及其形成机理研究[J]. 光学学报, 2011,31(5):23-31.
[52] Huang C C, Li Y M, Sun D Y, et al. Research of scattering spectrum characteristic and formative mechanism of Taihu Lake waters[J]. Acta Optica Sinica, 2011,31(5):23-31.
[53] 丁潇蕾. 基于水体吸收系数的城市黑臭水体遥感识别与分级方法研究[D]. 南京:南京师范大学, 2019.
[53] Ding X L. Study on remote sensing identification and classification of urban black and odor water based on water absorption coefficient[D]. Nanjing:Nanjing Normal University, 2019.
[54] 丁潇蕾, 李云梅, 吕恒, 等. 城市黑臭水体的吸收特性分析[J]. 环境科学, 2018,39(10):4519-4529.
[54] Ding X L, Li Y M, Lyu H, et al. Analysis of absorption characteristics of urban black-odor water[J]. Environmental Science, 2018,39(10):4519-4529.
[55] 张雪, 赖积保, 李家国, 等. 基于高分一号影像的深圳市黑臭水体遥感识别[J]. 科学技术与工程, 2019,19(4):268-274.
[55] Zhang X, Lai J B, Li J G, et al. Remote sensing recohnition of black-odor waterbodies in Shengzhen City based on GF-1 satellite[J]. Science Technology and Engineering, 2019,19(4):268-274.
[56] 申茜, 朱利, 曹红业. 城市黑臭水体遥感监测与筛查研究进展[J]. 应用生态学报, 2017,28(10):3433-3439.
[56] Shen Q, Zhu L, Cao H Y. Remote sensing monitoring and screening for urban black and odorous water body:A review[J]. Chinese Journal of Applie Ecology, 2017,28(10):3433-3439.
[57] 李正强, 陈兴峰 马 , 等. 光学遥感卫星大气校正研究综述[J]. 南京信息工程大学学报(自然科学版), 2018,10(1):6-15.
[57] Li Z Q, Chen X F, Mao Y, et al. An onverview of atmospheric correction for optical remote sensing satellites[J]. Journal of Nanjing University of Information Science and Technology(Natural Science Edition), 2018,10(1):6-15.
[58] Kotchenova S Y, Vermote E F, Matarrese R, et al. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data.Part I:Path radiance[J]. Applied Optics, 2006,45(26):6762-6774.
doi: 10.1364/ao.45.006762 pmid: 16926910 url: https://www.ncbi.nlm.nih.gov/pubmed/16926910
[59] Vermote E F, Tanré D, Deuze J L, et al. Second simulation of the satellite signal in the solar spectrum,6S:An overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997,35(3):675-686.
[60] Berk A, Conforti P, Kennett R, et al. MODTRAN®6:A major upgrade of the MODTRAN®radiative transfer code [C]// 2014 6th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing(WHISPERS).IEEE, 2014.
[61] Cooley T, Anderson G P, Felde G W, et al. FLAASH,a MODTRAN4-based atmospheric correction algorithm,its application and validation[C]// International Geoscience and Remote Sensing Symposium.IEEE, 2002.
[62] 汤玉明, 邓孺孺, 刘永明, 等. 大气气溶胶遥感反演研究综述[J]. 遥感技术与应用, 2018,33(1):25-34.
[62] Tang Y M, Deng R R, Liu Y M, et al. Research review of remote sensing for atmospheric aerosol retrieval[J]. Remote Sening Technolohy and Application, 2018,33(1); 25-34.
[63] 王中挺, 厉青, 王桥, 等. 利用深蓝算法从HJ-1数据反演陆地气溶胶[J]. 遥感学报, 2012,16(3):596-610.
[63] Wang Z T, Li Q, Wang Q, et al. HJ-1 terrestrial aerosol data retrieval using deep blue algorithm[J]. Journal of Remote Sensing, 2010,16(3):596-610.
[64] Gordon H R, Wand M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS:A preliminary algorithm[J]. Applied Optics, 1994,33(3):443-452.
doi: 10.1364/AO.33.000443 pmid: 20862036 url: https://www.ncbi.nlm.nih.gov/pubmed/20862036
[65] Ruddick K G, Ovidio F, Rijkeboer M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters[J]. Applied Optics, 2000,39(6):897-912.
pmid: 18337965 url: https://www.ncbi.nlm.nih.gov/pubmed/18337965
[66] 孙伟伟, 杨刚, 陈超, 等. 中国地球观测遥感卫星发展现状及文献分析[J]. 遥感学报, 2020,24(5):479-510.
[66] Sun W W, Yang G, Chen C, et al. Development status and literature analysis of China’s earth observation remote sensing satellites[J]. Journal of Remote Sensing(Chinese), 2020,24(5):479-510.
[67] 彭令, 梅军军, 王娜, 等. 工矿业城市区域水质参数高光谱定量反演[J]. 光谱学与光谱分析, 2019,39(9):2922-2928.
[67] Peng L, Mei J J.Wang N, et al. Quantitative inversion of water quality parameters in industrial and mining cites from hyperspectral remote sensing[J]. Spectroscopy and Spectral Analysis, 2019,39(9):2922-2928.
[68] 申茜, 张兵, 李俊生, 等. 太湖水体反射率的光谱特征波长分析[J]. 光谱学与光谱分析, 2011,31(7):1892-1897.
doi: 10.3964/j.issn.1000-0593(2011)07-1892-06 pmid: 21942046 url: http://dx.doi.org/10.3964/j.issn.1000-0593(2011)07-1892-06
[68] Shen Q, Zhang B, Li J S, et al. Characteristic wavelengths analysis for remote sensing reflectance on water surface in Taihu Lake[J]. Spectroscopy and Spectral Analysis, 2011,31(7):1892-1897.
doi: 10.3964/j.issn.1000-0593(2011)07-1892-06 pmid: 21942046 url: http://dx.doi.org/10.3964/j.issn.1000-0593(2011)07-1892-06
[69] 郭一洋. 基于光学分类的太湖藻蓝蛋白反演[D]. 阜新:辽宁工程技术大学, 2016.
[69] Guo Y Y. Retrieval of phycocyanin concentrations based on water reflrctance spectra classification in Taihu Lake[D]. Fuxin:Liaoning Technical University, 2016.
[70] 郭一洋, 朱利, 吴传庆, 等. 基于水面反射率光谱分类的太湖藻蓝蛋白浓度反演[J]. 环境科学学报, 2016,36(8):2905-2910.
[70] Guo Y Y, Zhu L, Wu C Q, et al. The retrieval of phycocyanin concentrations in Taihu Lake based on water reflectance spectra classification[J] Acta Scientiae Circumstantiae, 2016,36(8):2905-2910.
[71] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[71] Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press. 2016.
[72] Kim Y H, Im J, Ha H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014,51(2):158-174.
[73] 孙驷阳. 基于多源遥感与机器学习的密云水库水质参数反演研究[D]. 北京:北京林业大学, 2019.
[73] Sun S Y. Inversion of water quality parameters of miyun reservoir based on multi-source remote densing and machine learning[D]. Beijing:Beijing Forestry University, 2019.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[10] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[11] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[12] LI Hemou, BAI Juan, GAN Fuping, LI Xianqing, WANG Zekun. River discharge estimation based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
[13] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech