Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 60-63     DOI: 10.6046/gtzyyg.2010.04.13
Technology Application |
A Remote Monitoring Mathematical Model for Urban Expansion in Changsha
SU Cen 1,2, MO Jun-jie 3
1.China University of Geosciences, Wuhan 430074, China; 2.Hunan No.2 Academy of Surveying and Mapping, Changsha 410119, China; 3.Hunan Remote Sensing Center, Changsha 410007, China
Download: PDF(771 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 With the population growth and the rapid development of national economy, urban construction scale has also been growing. Urban expansion has led to a sharp reduction of arable land, which in turn seriously restricted the social and economic development. In this paper, adopting the remote sensing data and topographic map data acquired in different periods and using image processing and interpretation of human-machine interactive information retrieval method, the authors obtained the scale of urban development and land use change information of 10 different periods in Changsha. According to statistical analysis and data distribution, a mathematical model for urban growth in Changsha was established, and the factors responsible for helping and restricting the economic development in Changsha are analyzed and evaluated.

Keywords Land surface temperature      Landsat TM      Mono-window algorithm      Atmospheric mean temperature      Transmittance     
: 

 

 
  TP 79

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Zhi-hao
LI Wen-juan
ZHANG Ming-hua
Arnon Karnieli
Pedro Berliner
Cite this article:   
QIN Zhi-hao,LI Wen-juan,ZHANG Ming-hua, et al. A Remote Monitoring Mathematical Model for Urban Expansion in Changsha[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 60-63.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.13     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/60

[1]李湘莲,陈金爱.洞庭湖吞吐调蓄数学模型及调洪功能评估[J].国土资源遥感,2002(2):57-60.

[2]罗志刚.对城市化速度及相关研究的讨论[J].城市规划学刊, 2007(6):12-15.

[3]陆际恩.论推进城市化与实现资源及能源消耗速率的零增长[J].当代经济,2003(10):5-8.

[4]陆大道.我国的城镇化进程与空间扩展[J].城市规划学刊, 2007(4):6-8.

[5]刘红萍,杨钢桥.城市住宅用地空间扩张机制与调控对策[J]. 经济地理, 2005(1):13-16.

 

[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[6] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[7] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[8] Qi CAO, Manjiang SHI, Liang ZHOU, Ting WANG, Lijun PENG, Shilei ZHENG. Study of the response characteristics of thermal environment with spatial and temporal changes of bare land in the mountain city[J]. Remote Sensing for Land & Resources, 2019, 31(4): 190-198.
[9] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[10] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[11] Jing ZHANG, Dongli JI, Yaonan BAI, Jinjie MIAO, Xu GUO, Dong DU, Yandong PEI. Research on the macro-characteristics of the sedimentation in the middle reach of Chaobai River based on remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 156-163.
[12] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[13] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[14] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[15] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech